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Introduction
The mining industry is increas-

ingly concerned about the effects of 

It is unrealistic to think that 
one model, estimated from sparse 
measurements, would be enough to 
capture the uncertainty from both 
geologic and economic sources and 
allow for optimal decisions. The en-
tire breadth of uncertainty should be 
considered, as both upside and down-
side risks can have large impacts on 
the investment potential and opera-
tional efficiency of mining projects. 
The workflow presented here uses 
Monte Carlo simulation and para-
metric analysis together to explicitly 
analyze the breadth of uncertainty 
from geologic and economic sources 
as it applies to ultimate-pit calcula-
tion and long-range mine planning.

In openpit mining, the ultimate 
pit represents the limit of extraction 
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risk and uncertainty. Uncertain prices, 
unpredictable global markets, and 
unforeseeable changes in foreign ex-
change rates can alter the economic 
viability of a mining project in substan-
tial ways. This economic uncertainty is 
compounded by geologic uncertainty. 
The extent and quality of any given 
deposit cannot be fully measured and 
is not known before consequential 
decisions must be made. These two 
sources of uncertainty are responsible 
for the majority of deviation between 
what happens during operation and 
what was initially planned. Under-
standing and explicitly quantifying 
this uncertainty will lead to better 
decision making and allow mining en-
gineers and investors to be aware of 
what may occur.
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such that mining any more material would require the 
removal of so much waste as to make any extra ore ir-
relevant. The ultimate pit is used to assess the economic 
viability of the project and to guide the mine planning 
process. It is generally the first stage in overall site plan-
ning as other infrastructure will be placed to avoid inter-
secting the pit limits and sterilizing the ore. The ultimate 
pit is based on geotechnical, geologic and economic pa-
rameters. All of these parameters are uncertain due to 
sparse measurements, uncertain markets and other risks. 
These parameters have complex and nonlinear effects on 
the ultimate pit, which motivate the use of Monte Carlo 
simulation.

In this paper, we propose a workflow for explicitly 
analyzing geologic, geotechnical and economic uncer-
tainties as they affect the ultimate pit in order to better 
understand the risks associated with any given mining 
project. The workflow allows for the creation of various 
figures and maps that summarize the risks and allow for 
risk-qualified decision making. Ultimate-pit uncertainty 
is also translated into a probability model that is useful in 
both mine design and project evaluation. This workflow is 
made possible by an ultimate-pit calculator that is able to 
analyze hundreds of different possibilities in a few hours 
instead of a few days or weeks. 

We conduct a case study using the workflow and com-
pare the results with those of conventional estimation-
based techniques. We then conduct a brief comparative 
study of ultimate-pit optimization algorithms. 

Literature review
The ultimate pit represents the final pit contour such 

that all economic ore is extracted and all unnecessary 
waste is left in place. Hochbaum and Chen (2000) for-

mally expressed this problem as:

Maximize   (1)

subject to   (2)

    (3)

where the block model of the deposit has been re-ex-
pressed as a directed graph G = (V, E), in which each 
block is a node in V. Dependencies, dictated by geotech-
nical constraints, are expressed as edges in the set E. The 
economic block value b is used to determine the integer 
vector x, which indicates if a given block is extracted or 
left in place.

Equations (1)-(3) have traditionally been solved using 
the Lerchs-Grossmann algorithm, introduced by Lerchs 
and Grossmann in 1965. In their paper, Lerchs and Gross-
mann indicated that the ultimate-pit problem could be ex-
pressed as a flow problem but recommended their direct 
approach, possibly due to computer memory constraints. 
Picard (1976) provided the mathematical justification by 
proving that the selection problem is equivalent to com-
puting the maximum valued closure of a directed graph. 
As a consequence, sophisticated network flow algorithms 
can be used in place of the Lerchs-Grossmann algorithm, 
and they can calculate identical results in a fraction of the 
time. The push-relabel algorithm of Goldberg and Tarjan 
(1988) and the pseudoflow algorithm of Hochbaum (2001, 
2008) are two such sophisticated alternatives.

Hochbaum and Chen’s study (2000) showed that the 
push-relabel algorithm outperformed the Lerchs-Gross-
mann algorithm in nearly all cases. When the number of 
vertices is large, greater than a million, network flow al-
gorithms perform orders of magnitude faster and com-
pute precisely the same results.

Parametric analysis. Parametric analysis, introduced 
by Lerchs and Grossmann in the same 1965 paper, is a 
technique to approximate an optimum mining sequence 
by calculating several nested pits. This is commonly called 
the nested Lerchs-Grossmann algorithm. The block val-
ues are decreased by some constant, and Eqs. (1)-(3) are 
solved again. This reduction serves to constrain the vol-
ume of the pit and generate a smaller nested pit. When 
this process is repeated, several nested pits are generated 
that, when taken as a sequence, extract the highest val-
ued blocks first. However, reducing the block values by 
a constant does not have an intuitive relationship with 
the inputs to the block value calculation, so an alternative 
reduction strategy is generally employed.

Matheron (1975) introduced a form of parametric 
analysis where the block value b is expressed in terms of 
a parameter λ as in:

   (4)

where c
i
 is the sum of the terms linearly dependent on λ 

and d
i
 is the sum of the independent terms. In practice, 

d is taken to be the costs associated with extracting, pro-
cessing, transporting and selling the block, and c is taken 
to be any revenue. In this case, λ is called a revenue fac-
tor after Whittle (1989). The ultimate pit is calculated 

Results of standard estimate-based long-range planning 
(left), and how simulation changes the results to account for 
uncertainty (right). 

Figure 1
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for many revenue factors λ ≥ 0 to generate the nested 
pits. 

Geostatistics and simulation. Determining the values 
of the c and d terms in Eq. (4) is both site and commod-
ity specific and depends on many different parameters. 
Many of the parameters are local, in that they vary by 
location and depend on some geologic attribute such as 
metal content, rock type and specific gravity. These geo-
logic attributes must be known at every location within 
the volume of interest to inform the economic block 
value, but they cannot be directly measured at every lo-
cation. Therefore, geologists and mining engineers have 
turned to the field of geostatistics to inform robust inter-
polation and extrapolation techniques to fill in the gaps. 
These techniques are based on the sound application of 
geology and statistics to generate fully sampled models 
that can then be used in downstream studies. The theory 
and modern practice of mining geostatistics are discussed 
in Rossi and Deutsch (2014).

Estimation-based techniques such as inverse distance 
or kriging are only capable of providing one model that 
is smooth by construction and possibly systematically 
biased. Geologic uncertainty cannot be captured with a 
parameter and therefore a single geologic model is not 
enough. Instead, geostatisticians have adopted a stochas-
tic framework based on Monte Carlo simulation. Simula-
tion techniques such as sequential Gaussian simulation 
(Isaaks, 1990) and sequential indicator simulation (Ala-
bert, 1987) are free of conditional bias and provide many 
different equiprobable realizations that, when analyzed 
together, sample the underlying geologic uncertainty.

Uncertainty in mine planning. The results of geosta-
tistical simulation have been used to great effect in mine 
planning before. Dimitrakopoulus et al. (2002) analyzed 
the effect of geologic uncertainty on the ultimate pit of a 
disseminated, low-grade gold deposit and found that the 
realizations departed substantially from the kriged esti-
mate. Dimitrakopoulus et al. (2007) used orebody uncer-
tainty to determine designs that perform well in the pres-
ence of uncertainty. They indicated that designs based on 
stochastic mine planning had led to substantial increases 
in net present value as the entire range of uncertainty is 
analyzed.

Monkhouse and Yeates (2005) advocated moving be-
yond the naive optimization of a single model of the sub-
surface and instead urged practitioners to use all sources 
of uncertainty to make better plans and decisions. Plans 
that use uncertainty can be developed to achieve optimal 
results across a reasonable range of real-world inputs. 

Even with these previous studies there is more to be 
done to analyze uncertainty in the ultimate pit. One of 
the drawbacks to sensitivity studies and simulation in 
general is the extra computation time and professional 
time required. We have, therefore, developed a workflow 
that can be used to capture this uncertainty and quickly 
summarize it using commercially available software.

Workflow
The typical results of a long-range mine planning ex-

ercise for a feasibility study, or for analysis during pro-
duction, include a series of pit shells, a pit-by-pit graph 
and a table of metrics for the chosen ultimate pit. Tradi-
tionally, these results are based off of a single estimated 
model and therefore have no consideration of geologic 
uncertainty. To add more information to these results and 
account for all sources of uncertainty, stochastic meth-
ods are used. A conceptual depiction of this is shown in  
Fig. 1. The pit shells are replaced with many different 
possible pit shells. Uncertainty in the pit-by-pit graph is 
depicted by error bars. The various metrics are replaced 
with histograms showing the distribution. Additionally, a 
further compilation step is introduced to generate a prob-
abilistic model of the pit shells.

The workflow is shown in Fig. 2. Although the entire 
workflow can be done manually, this becomes practi-
cally infeasible as the number of realizations increases. 
Simple scripts are used to loop through the realizations 
and synthesize the results. There are three inputs to the 
ultimate-pit uncertainty workflow: a geostatistical simu-
lation model of the subsurface; distributions of the input 
economic parameters; and a distribution of the geotech-
nical parameters.

To achieve the improvements shown in Fig. 1, a sim-
ulation model of the subsurface is required to generate 
equiprobable realizations of the underlying geology. The 
geostatistical simulation workflow to generate these re-
sults will not be discussed in this paper. However, practi-
tioners of simulation should be mindful of recreating the 
input statistics, such as distributions, correlations and var-
iograms, and ensuring the validity of the simulation as a 
whole. Issues of volume variance and data support should 
be considered, though this may be avoided by simulating 
at the data scale before averaging to the relevant scale for 
mine planning.

To analyze uncertainty in the economic parameters, 
we introduce a stochastic economic block value function. 
At its core, the economic block value function is simply 
revenues less costs. A simplistic economic block value 
formula may have the following form:

   (5)

where λ is the revenue factor, T
o
 is the tonnage of ore, g 

is the grade, r is the recovery or percentage of product 

Flowchart showing the proposed workflow for analyzing 
ultimate-pit uncertainty.

Figure 2
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recovered, P is the commodity price, PC is the processing 
cost, T is the total tonnage and MC is the mining cost. This 
is a very basic economic block value function and often 
more complicated functions are used in practice. Normal-
ly, several different possible processes are defined. Sell-
ing costs and different mining costs are included. Multiple 
factors are applied based on rock type, location or other 
parameters. Geometallurgical attributes, contaminants 
and other local inputs are also often included. 

By using geostatistical simulation, we have accounted 
for uncertainty in the location-dependent inputs to the 
economic block value calculation, such as grade, as they 
vary between geologic realizations. However, some of the 
global inputs such as commodity price are also variable, 
and their values are uncertain. To account for uncertainty 
in these global parameters, we will define some distribu-
tion that captures the parameter in question and sample 
it once for each realization. This leads to a stochastic eco-
nomic block value function that will have different global 
economic parameters by realization and therefore ac-
count for uncertainty. If production data, or some other 
information, are available, this may be done explicitly 
without resorting to assumptions regarding the character 
of the underlying distribution.

The geotechnical information describes the allowable 
pit slopes for every block and can take many forms. Com-
monly, slope requirements are defined by azimuth within 
different zones. Geotechnical uncertainty can be included 
by having different slope definitions for each realization 
or by basing the slopes on zones that had been simulated 
using some form of categorical simulation. Depending on 
the geotechnical context of the area in question, it may 
make sense to hold the slope definitions constant across 
all realizations.

The remainder of the workflow is to draw from the in-
put distributions, fully sampling the space of uncertainty, 
and then perform parametric analysis with that particu-
lar geologic model, economic block value function and 
slope definition. The sampling and parametric analysis is 
then completed for many realizations. After a reasonable 
number of realizations, on the order of a few hundred, 
have been completed, the results are synthesized.

To aid in describing how to synthesize the results, we 
will use the following notation for the pits. Recall that 
each pit vector, calculated from Eqs. (1)-(3), is an integer 
array with a 1 for each block that lies within the ultimate 
pit limits and 0 for any block outside. Denote a single pit 
vector x

l, λ, where l is the realization index and λ is the rev-
enue factor. Let L and Λ represent the set of realizations 
and revenue factors, respectively. One common summary 
is the pit number, which is calculated as follows:

   (6)

The pit number is set to 0 for air blocks and to a large 
number for blocks that are outside the largest pit.

The pit numbers correspond directly to the pit-by-pit 
graph. Ore and waste tonnages may be calculated simply, 
and with many realizations, error bars may be added. The 
error bars indicate the variability in both ore and waste 
for that particular revenue factor. Histograms of key in-

dicators for any given revenue factor may be extracted 
and reported. The discounted cash curve and net present 
value depend on determining an extraction sequence that 
honors production and extraction constraints. Determin-
ing an extraction sequence is beyond the scope of this 
paper.

A further useful summary of ultimate-pit uncertainty 
is the probability model. The probability model is similar 
to the hybrid pits of Whittle and Bozorgebrahimi (2004). 
It is defined as:

   (7)

The probability model indicates what the probability 
is for a given block to be extracted for a given revenue 
factor. For example, if it is assumed that the ultimate pit 
occurs at some revenue factor λ

U
, PM(λ

U
) can form the 

basis for designing the ultimate pit and the probability 
models for λ < λ

U
 can be used to assist in sequencing the 

mining process to extract high-probability ore first. The 
intersection of PM(λ

U
) and the topography can also be 

plotted on a map that indicates the range of possible loca-
tions of the final pit crest.

Case study
A case study of a small copper deposit was carried out 

to test the workflow and analyze ultimate-pit uncertainty 
with real data. The deposit was modeled using both esti-
mation and simulation techniques. 

Parametric analysis was completed using stochastic 
economic block value functions and varying slopes. The 
results were then synthesized, and ultimate-pit uncertainty 
was assessed to inform mine valuation and mine planning.

Geologic modeling. The area of interest had 43 drill-
holes with combined length of 1,450 m, about 400 assays 
measuring copper content and rock type, and five rock 
types associated with the host rock, sedimentary layers, 
quartz, andesite and the high-grade copper-bearing dyke. 
This is an exploration dataset and the deposit was sparse-
ly sampled, so there was substantial geologic variation. 
This dataset is simplistic, with only one product, but the 
workflow is suitably general for more realistic cases.

An implicit model of the rock types using signed dis-
tance functions was generated to inform the extent and 
character of the domains. This model was conditioned to 
drillhole data and existing geologic interpretation. Within 
each domain, experimental variograms of copper grade 
were calculated and modeled. These variogram models 
were then used to generate a best-estimate model using a 
standard ordinary kriging workflow. Cross validation was 
completed, and the parameters were tuned to form a con-
ventional “best” estimate.

The copper assays were then transformed to facilitate 
sequential Gaussian simulation. Normal score variograms 
were calculated and modeled, and copper grade within 
the domains was simulated. Several of the realizations 
were checked visually and many more were assessed for 
variogram and histogram reproduction. Two of the simu-
lated realizations are shown in Fig. 3. These realizations 
form the basis for the geologic uncertainty.
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Ultimate-pit calculation. For the case study, the ba-
sic economic block value function defined in Eq. (5) was 
used. Lacking production data and any other insight, the 
various global parameters were assumed to be normally 
distributed with the means and standard deviations given 
in Table 1. These assumptions were made without loss of 
generality; if more detailed information existed, it could 
easily be implemented into the scripted workflow. In 
practice, a more realistic economic model should be used 
that varies with time and considers how price uncertainty 
increases into the future.

Forty-six revenue factors uniformly distributed be-
tween 0.3 and 1.2 were used in the parametric analysis. 
These nested pits formed the basis for the pit-by-pit 
graph and the sequence used to generate the discounted 
cash flows. A high-level sequence was calculated using 
an assumed mining rate of 500 kt/a (551,000 stpy) and a 
bench lag of three benches.

A single realization consists of one geologic model 
generated using sequential Gaussian simulation, and a set 
of parameters sampled from Table 1. Five hundred such 
realizations were calculated. The entire process required 
the calculation of 23,000 ultimate pits on a model with 
just over 1.8 million blocks.

Results and discussion
Figure 4 shows the pit-by-pit graph and distributions 

of several key performance indicators. There is substan-
tial variation in the key performance indicators across all 
revenue factors. The ore and waste tonnage bars indicate 
the mean value across all of the realizations, and the error 
bars indicate the 10th and 90th percentiles. The discount-
ed cumulative cash flow is shown as three lines with the 
bold line indicating the mean and the two surrounding 
lines as the 10th and 90th percentiles. The dashed black 
line shows the conventional estimation-based results us-
ing the kriged model and performance indicators calcu-
lated with this single model.

The variation in the key performance indicators em-
phasizes the need to consider uncertainty in parametric 
analysis and ultimate-pit calculation. Strategic decisions 
are based on the value and extent of the ultimate pit and 
if those values are demonstrably variable, those decisions 
should adapt. It is one thing for a mining engineer to de-
cide on the fleet to purchase based on a single number, 
but if the distribution is known, the fleet can be purchased 
with the appropriate amount of flexibility in mind. 

In this case study, the average kriging model with av-
erage economic parameters does not give an average as-
sessment after the ultimate-pit and long-range planning 
analysis is completed. The expected discounted value 
across all realizations is $11.3 million with a standard 
deviation of $2 million, and the kriged model indicates 
a value of $9.7 million. Deviation is expected, as the ulti-
mate-pit calculation is not linear with respect to the input 
parameters and average inputs do not guarantee average 
outputs. However, it is not guaranteed that the average 
assessment will be lower than the average. This discrep-
ancy is, in part, due to the nonlinear nature of ultimate-pit 
optimization and the smoothing effects of kriging. In this 
case study, the cutoff grade is close to the mean, which 

Two realizations of copper grade. Blocks are displayed semi-
transparent and colored by copper content.

Figure 3

Parameter Mean Standard deviation

Mining cost $2/t $0.2/t

Recovery 75% 1%

Price $2.2/lb $0.2/lb

Processing cost $4.8/t $0.1/t

Overall pit slope 45° 1°

Table 1
Global parameters varied in the case study.

Results of the case study for ultimate-pit uncertainty. Error 
bars and lines indicate the 10th and 90th percentiles. The his-
tograms are for revenue factor of 1.0. The dashed line shows 
the result from a conventional estimation-based workflow.

Figure 4
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causes slight variations in grade to substantially alter the 
economic block value and therefore change the pit.

A probability model was extracted for revenue fac-
tor 1, and the intersection of this model with the topogra-
phy is shown in Fig. 5. Every block is colored based on its 
likelihood to be within the pit. The red innermost blocks 
are in all 500 pits, the blue outside blocks are in none of 
the pits. The pit crest of the single model from kriging 
is also shown as a thick black line. This model indicates 
where the crest could be, based on the underlying uncer-
tainty. From a mine-planning perspective, a continuum of 
results is much more valuable. In this case study, the pit 
wall is much less variable along the east side, but there 
are a great many pits that extend toward the west. Infra-
structure can now be placed appropriately, accounting for 
where the pit may be in the future.

Algorithm comparison
Running sensitivity studies in the presence of geologic, 

economic and geotechnical uncertainty requires a great 
deal of computing power, and the choice of the underlying 
algorithm, as well as the implementation itself, is vitally im-
portant to facilitate this workflow. Three programs that can 
be used to solve the ultimate-pit problem were considered 
in a runtime comparison: Maptek’s Vulcan 9.1 lg_optipit 
(Maptek, 2015), which uses the push-relabel algorithm; the 
Centre for Computational Geostatistics’ lg3d (Deutsch 
and Deutsch, 2014), which uses the Lerchs-Grossmann al-
gorithm; and Hochbaum’s pseudo_fifo v3.23 (Hochbaum, 
2008), which uses the pseudoflow algorithm. 

These programs are quite different in terms of scope 
and utility. Pseudo_fifo is primarily a computational util-
ity implemented as a general solution to the underlying 
“max flow/min cut” problem and does not build the pre-
cedence graph, so lg3d was used to create the graph for 
pseudo_fifo. The Centre for Computational Geostatistics’ 
lg3d was written with geostatistical sensitivity in mind and 
runs multiple realizations in parallel and shares the pre-
cedence graph between realizations. Maptek’s Vulcan 9.1 
lg_optipit has more options than lg3d and is a commercial 
implementation that uses a binary format for storing the 

block model, enabling faster retrieval.
Eleven models from five datasets were compiled and 

run against each program. For each dataset, Table 2 lists 
the number of blocks, which is a tangible metric and highly 
familiar but can be misleading depending on the number 
of air and waste blocks as well as where the ore blocks are. 
Therefore, the graph size is also reported in terms of |V|, 
the number of active vertices, and |E|, the number of edges 
following basic graph trimming. Active vertices consist of 
all ore blocks, as well as any waste blocks supported by any 
ore block, but do not include specific air blocks that can 
be safely ignored. In all of the test cases, eight benches of 
edges were used with a pit slope of 45°.

Table 2 also shows the solution times, measured from 
when the graph was defined and allocated until the block 
selection was complete, which for the flow-based algo-
rithms was once the minimum cut had been calculated 
and for the Lerchs- Grossmann was once all strong nodes 
corresponded to a valid closure of the precedence graph. 
The flow-based algorithms, pseudoflow and push-relabel, 
were faster than the Lerchs-Grossmann. 

While the numbers of active vertices and edges had a 
strong impact, there were other underlying complexities 
that greatly affected the solution time. The Copper Pipe 
dataset had fewer than half the nodes and edges of the 
Gold Vein dataset, yet took much longer to solve for all 
of the algorithms. This is possibly due to the steep verti-
cal configuration of the ore blocks, which led to a much 
more difficult selection.

This brief run-time comparison indicate that if the 
problem size is under a few hundred thousand active ver-
tices, it is not overly consequential which engine is used, 
but as the number of blocks increases, and thereby the 
numbers of vertices and edges, flow-based algorithms are 
superior due to their lower algorithmic complexity. After 
several million blocks, the Lerchs-Grossmann algorithm 
is not appropriate, and reblocking must be used to reduce 
the problem size, especially when many realizations must 
be computed. There are other practical considerations, 
such as the ease of scripting, if realizations can be com-
pleted in parallel, if the expensive graph-building process 
can be completed once, and the possibility of integration 
with existing commercial solutions. With the flow-based 
algorithms, the solution time is no longer the bottleneck. 
Reading the data and building the graph dominate the 
wall time, which is precisely where an integrated solution 
excels. In practice, flow-based algorithms are better than 
the Lerchs-Grossmann algorithm for computing ultimate 
pits in the presence of geologic, economic and geotechni-
cal uncertainty due to their greatly reduced runtime.

Conclusions
We proposed a workflow to capture ultimate-pit un-

certainty using Monte Carlo simulation and an efficient 
ultimate-pit solver. The results sample the entire space of 
uncertainty and allow for risk-qualified decision making. 
Variability in the subsurface and all other input param-
eters is explicitly translated through the long-range mine 
planning transfer function to analyze uncertainty in the 
ultimate pit. We explored some practical considerations 
for synthesizing the results and showed how a probability 

Intersection of the probability model for revenue factor = 
1 with the surface. The pit crest for the estimated model is 
shown as the thick black line. 

Figure 5
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model can be generated for infrastructure planning or to 
direct future drilling activities. We also investigated the 
performance of three algorithms for computing the ulti-
mate pit.

A case study was completed on a small exploration 
dataset with 43 drillholes. Kriging and simulation were 
used to build the geologic models. The models were trans-
lated into economic block values using an average func-
tion for the kriged model, and a stochastic function for 
each realization that sampled the underlying economic 
parameters. Parametric analysis was then completed us-
ing a range of revenue factors for all realizations. The re-
sults were synthesized into figures and graphs that sum-
marized the risks inherent in the mining project.

The results of the case study indicate a need for ex-
plicitly analyzing uncertainty. The mean Monte Carlo re-
sult shows a larger pit that generates more revenue and 
requires more ore and waste to be mined than the con-
ventional analysis based on the mean input parameters 
would suggest. This discrepancy may lead to suboptimal 
decisions and plans that do not consider the underlying 
uncertainty. Using an average model does not guarantee 
average results with complex nonlinear processes, such as 
pit optimization and long-range mine planning.

Analyzing uncertainty at an early stage allows for 
plans to be developed that account for what could oc-
cur. Uncertainties in geologic, economic and geotechnical 
parameters can be quantified and analyzed, which allows 
for flexible plans to be developed and appropriate risk-
qualified decisions to be made. ■

Disclosure statement
Maptek sells Vulcan 9.1 as a commercial software 

package.
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Dataset Solution time (sec), average of 5 runs

Name No. of blocks No. of vertices No. of edges Push-
relabel

Pseudo-
flow

Lerchs-
Grossmann

McLaughlin* 2,140,342 544,000 56,352,700 20 2 44

Gold Vein 16,244,739 3,523,000 620,740,400 9 4 2712

Case Study 1,827,500 123,400 11,254,700 1 0 16

Copper Pipe 2,754,000 1,436,700 255,802,800 52 9 56,585

Bauxite** 46,800 14,500 813,200 0 0 0

Bauxite** 115,200 35,200 2,779,700 0 0 1

Bauxite** 220,000 65,400 6,117,700 1 0 3

Bauxite** 374,400 121,800 12,913,700 1 0 11

Bauxite** 742,500 231,400 28,113,100 4 0 11

Bauxite 1,760,000 523,800 75,557,700 12 2 104

Bauxite** 2,995,200 910,900 139,738,700 22 5 683
*The McLaughlin dataset is from the Minelib library of openpit mining problems (Espinoza et al., 2012). **Reblocked

Table 2
Model summary and solution times for algorithm comparison.
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