
A Branch and Bound Algorithm for Open Pit
Grade Control Polygon Optimization

Matthew Deutsch1*

1Maptek, United States
*Corresponding author: matthew.deutsch@maptek.com

Grade control is a vitally important process in open pit mines. Misclassification of ore or waste
due to suboptimal polygon design has an immediate and substantial impact on the mine's bottom
line. Using an estimated block model with economic values, each block can easily be classified to
maximize profit. However, this baseline classification of blocks does not necessarily satisfy
mining width constraints. In this paper constructing a classification that both maximizes profit and
satisfies the mining width is shown to be NP-Hard. A practical algorithm for generating near
optimal, and often truly optimal, grade control polygons is introduced. This algorithm is based, in
part, on branch-and-bound which is used to vastly reduce the search space.

Introduction
Open pit grade control is the process of sampling, estimating, classifying and mining material. Mines perform this
process daily; drilling blast holes and taking samples, integrating those samples in some estimation framework to
create a model, making tactical decisions on how material should be classified, and then excavating the material and
hauling it to where it needs to go. This is a critical unit operation at mines today, in part because decisions made at
this stage are irreversible. Depending on the operation, improvements to grade control can lead to a larger increase
in profit than any other operational improvement [1].

The sampling, estimation, and mining aspects of grade control are extremely important, and often difficult to
perform correctly due to many factors. However, this paper will not focus on those difficulties, and instead focus on
the classification and selectivity aspects of grade control. We will assume that an appropriate grade control block
model is given and the mining process is set. Then the best classification for each individual block is the
classification which maximizes revenue. This best classification would be ideal, except most mines are not that
selective, and do not mine a single block at a time. The concept of a selective mining unit (SMU), used in medium to
long-range planning, does not apply directly in grade control and instead a larger collection of blocks is mined
together. That is, a single block classified as waste surrounded by ore would be routed to the mill anyway. This
selectivity constraint is often called the mining width.

Grade control engineers and geologists generally account for this mining width manually. They digitize grade
control polygons on top of the grade control model, using some visual criteria to determine if a polygon is minable
or not. However, this is a tedious and error prone process, and can lead to substantial economic loss due to
unnecessary dilution and ore loss. In many cases the errors from heedlessly misclassifying material during manual
polygon design outweigh the errors from the sampling and estimation process. Several techniques have been
proposed to automate the process of designing minable grade control polygons, including some based on
metaheuristics such as simulated annealing [2, 3], genetic algorithms [4], or hierarchical clustering techniques [5].

In this work a new method based on Branch and Bound and a thorough mathematical investigation of the problem is
introduced. Section one will define the problem in more detail, and introduce a precise mathematical formulation.
Then, in section two, an efficient algorithm is introduced and developed. The results of this algorithm on real mine
datasets is shown in section three, followed by possible extensions and conclusions in section four.

Problem Definition
The grade control classification problem can be formulated as having two main inputs; the economic grade control
model, and the mining width constraint. The model consists of a regular 2D grid of blocks, where each block
contains variables which correspond to the revenue for each of the possible classifications. For example, the model

may have three variables for each block indicating the revenue if the block goes to the mill, the leach pad, or the
dump. These values vary from block to block, and are both positive and negative. The revenue value is based on
many different factors, some of which are local, such as gold content, and others which are global, such as gold
price. This calculation is site and commodity specific, but boils down to revenues less costs. Figure 1 shows a grade
control model colored by the best classification with a few callouts showing the revenue variables.

Figure 1: Economic grade control model colored by best classification (Left), Same model with regions that

pass a 3x3 mining width element hatched (Right)

The second input is the definition of mining width. For this we use a structuring element, which is a small shape
defined on a 2d grid where the values are either 1 (if the 'block' belongs to the structuring element) or 0 (otherwise).
Typical structuring elements are rectangular, such as a 3x3 square, but they can also be irregular. Structuring
elements are often used in mathematical morphology and image analysis [6].

The desired output of this problem is a classification on a block basis that maximizes value, and satisfies the mining
width element such that every block 'fits' within at least one structuring element. The mining width constraint
ensures that individual blocks, or small spurs are not constructed, because if a block is to have a classification at
least a structuring elements worth of blocks around it must also have the same classification. In Figure 1, on the
right, the original baseline classification is shown, and regions which satisfy a 3x3 mining width are shaded in.

Mathematical Formulation
We formulate the grade control classification problem as the following optimization problem. Given a universe of
blocks ܷ, a collection of possible classification ܥ, a value function ܾ, and many subsets ܵ ൌ ሼݏଵ, … , ௞ሽ derivedݏ
from the mining width. The problem is to:

ܺܣܯ ෍ ܾ௨,௖ ∙ ௨,௖ݔ
௨∈௎,௖∈஼

 (1)

subject to

 0 ൑ ௨,௖ݔ ൑ ,ݎ݁݃݁ݐ݊݅ 1 ݑ∀ ∈ ܷ, ܿ ∈ (2) ܥ

 ෍ ௨,௖ݔ
௖∈஼

ൌ ݑ∀ 1 ∈ ܷ (3)

 0 ൑ ௦ݕ ൑ ,ݎ݁݃݁ݐ݊݅ 1 ݏ∀ ∈ ܵ (4)

 ෍ ௦ݕ
௦:௨∈ௌ

൒ ݑ∀ 1 ∈ ܷ (5)

௦೔,భݔ ൌ ௦೔,మݔ ൌ ⋯ ൌ ௜ݏ∀ ௦೔,೗ݔ ∈ ௦ݕ|ܵ ൌ 1 (6)

Equation 1 is the objective function. we would like to maximize the value function ܾ, which depends on the block
and the classification, using a decision variable ݔ which indicates if a specific block ݑ has a classification ܿ.
Equation 2 indicates that ݔ is a binary decision variable. Equation 3 enforces that each block must have one, and
only one, classification. Then to handle mining width we introduce a further decision variable ݕ which is again a
binary variable (Equation 4). Each block ݑ, must be in at least one of the selected sets in ܵ (Equation 5), along with
the constraint that each selected set must only have blocks with the same classification (Equation 6).

The sets in ܵ are constructed from the structuring element, and the area of interest. Each set ݏ௜ is a collection of
blocks where the structuring element 'sits' on top of the block model. For example, if a 3x3 mining width is used in a
5x6 block model there are 12 different sets in ܵ, 3 rows of 4, each consisting of 9 elements. The sets will necessarily
overlap.

It is sometimes convenient to work with the decision variant of this problem, where we are given some number ݍ in
addition to all the other inputs, and we must report if a solution exists with a value greater than q, that is:

෍ ܾ௨,௖ ∙ ௨,௖ݔ ൐
௨∈௎,௖∈஼

 (7) ݍ

To prove that this problem is NP-hard we will reduce the exact cover problem to our grade control classification
problem. In the exact cover problem, we are given a similar collection ܣ ൌ ሼܽଵ,… , ܽ௥ሽ of sets, each of which is a
subset of the universe ܷ. We must select a subset ܺ ⊂ such that every element in the universe is in ܣ of sets in ܣ
precisely one set in ܺ. The exact cover problem is one of Karp's 21 NP-Complete problems, and is proven NP-
Complete using a reduction from graph coloring [7].

To encode an exact cover problem as our grade control classification problem, add each set ܽ௜ in ܣ to ܵ, add a
classification for each set such that the value, ܾ is -1 for ݔ ∉ ܽ௜ and 0 for ݔ ∈ ܽ௜. Then set ݍ to be 0. If we can find
an exact cover, we would have a matching maximum classification; by simply assigning each set in the exact cover
to its corresponding classification. This implies that a yes answer to the exact cover problem implies a yes answer to
this constructed grade control classification problem.

In the other direction, assume that there is a solution to the grade control classification problem such that the value is
zero (our maximum). The solution to our problem is to choose a set cover from ܵ, and a classification for each set,
which we will represent as a pair ሺܺ, ݂ሻ, where ܺ ∈ ܵ is the set of sets chosen for the cover, and ݂: ܺ → is a ܥ
function that maps a set in ܺ to a classification in ܥ. It is sufficient to think of this function ݂ as classifying 'sets',
and not individual blocks, Equation 6 enforces each set in ܺ consists of blocks of the same classification.

A solution ሺܺ, ݂ሻ to our problem could be turned into the exact cover solution by taking each set in ܺ along with its
classification ݂ሺݔሻ and simply including the corresponding set from ܣ. Recall that all the sets ܺ ∈ ܵ and their
classifications in ܥ were constructed from ܣ in the first place. A maximum valued solution ሺܺ, ݂ሻ corresponds to an
exact cover solution. Except, in our problem, sets with the same classification can overlap. The constraint in
equation 5 only indicates that each block must be in at least one set of the final set cover, not exactly one. There are
two possibilities here; sets could be completely contained, or could properly overlap.

If sets were perfectly contained, then ሺܺ, ݂ሻ would contain at least two sets ݔ ∈ ܺ and ݔᇱ ∈ ܺ such that ݔ ⊆ If .′ݔ
this occurs, removing ݔ from ܺ	will not change the value of the solution as from Equation 3 we know that ݂ሺݔሻ ൌ
݂ሺݔᇱሻ. Removing all sets that are fully contained within some other set is easily accomplished in polynomial time
and creates a new solution ሺܺᇱ, ݂ᇱሻ that does not contain any full contained sets.

We still must prove that the solution ሺܺᇱ, ݂ᇱሻ does not contain any sets ݔ ∈ ܺ′ and ݔᇱ ∈ ܺ′ such that ݔ ∩ ′ݔ ് ∅.
Suppose towards contradiction that there is some set ݔ௜ ∈ ܺ′ such that ݂ሺݔ௜ሻ ് ܿ௜. Then ݂ሺݔ௜ሻ ൌ ௝ܿ for some ݆ ് ݅
with ݔ௝ ∈ ܺ′ also. However, there is no set ݔ௞ ∈ ܺ′ such that ݔ௜ ⊆ ܾ ௞, therefore there must be some blockݔ ∈ ௜ thatݔ
is not in ݔ௝. This block ܾ must then be assigned the classification ௝ܿ and have incurred a penalty of -1, which cannot
be recovered by any means. We know that the value of ሺܺᇱ, ݂ᇱሻ is 0, so this is a contradiction. In this constructed
instance of the grade control problem there will be no overlapping sets. ܺ′ is, thus, an exact cover.

We have shown that a yes answer to our constructed instance of the grade control classification problem implies a
yes answer to the exact cover problem, and vice versa. Which implies that a no answer to either problem also
implies a no answer to the other and thus, the two problems are equivalent. Since Exact Cover is NP-hard, the grade
control classification problem is also NP-hard, and if an algorithm existed to solve the grade control problem in
polynomial time, then it could also be used to solve the Exact Cover in polynomial time, which is unlikely.

Algorithm Development
In the previous section, we defined the problem and proved that it was NP-hard. In this section, despite this
complexity, we develop an algorithm for solving the grade control classification problem. Initially, it may seem
reasonable to evaluate all possible solutions and pick the best. However, even in the case of a small block model,
1500 blocks, and a few classifications, 3, there are 3ଵହ଴଴ ൎ 10଻ଵହ, different possible solutions. Only a small fraction
of the possible solutions satisfy the mining width constraint, but there is still far too many to evaluate directly.
Instead, there are many techniques to practically solve, or approximate, NP-hard problems including; metaheuristics,
integer programming, SAT solvers, enumeration techniques, and others.

The concept of a branch and bound algorithm was originally introduced in [8], although it was only first called
"branch and bound" in [9]. As the name suggests, a branch and bound algorithm consists of two main operations
which are applied to maximize the objective function; branching and bounding. The branching operation takes a
problem node which represents some or all the solution space and splits it into two or more smaller nodes which
contain a smaller fraction of the search space. The bound operation computes the upper bound of a node. If the
upper bound of the node is less than the best result found so far, it can be trimmed, reducing the search space.

Use ݏ to denote a solution instance which will consist of some assigned, and some unassigned blocks. An
unassigned block could take any classification. ݂ represents the objective function. ݃ is the function to compute the
upper bound of a node which assumes perfect selection in unassigned blocks. The general form of the algorithm is:

1. Initialize some heuristic solution to the problem ݏ௛ then set ܤ ← ݂ሺݏ௛ሻ, ܤ will store the highest value so
far. Set 	ݏ௕ ⟵ .will store the current best solution	௕ݏ	 ,	௛ݏ

2. Initialize a queue with one node ݊଴ where every block is unassigned.
3. Until Queue is empty
4. Take a node ݊ from the front of the queue
5. If ݊ is a fully specified node (no unknown blocks) and ݂ሺ݊ሻ ൐ ܤ
ܤ .6 ← ݂ሺ݊ሻ, ௕ݏ ⟵ ݊	
7. Else
8. If ݃ሺ݊ሻ ൑ or ݊ does not satisfy mining width ܤ
9. Continue
10. Else
11. Branch on ݊ by constructing |ܥ| more nodes, one for each classification, setting

 the first unknown block to ܿ௜
12. For each new node ݊௜
13. If ݃ሺ݊௜ሻ ൐ ܤ
14. Add ݊௜ to the queue

The algorithm as written defers checking mining width until a node is pulled off the queue because checking mining
width is the most expensive operation and requires checking many blocks. The upper bound is checked before
putting the node onto the queue and after taking a node off the queue because it is a very cheap operation, and the
best may have changed between when the node is pushed and when it is up for evaluation. If the queue becomes
very large it is useful to sweep through the queue every so often removing all nodes with ݃ሺ݊ሻ ൏ so that that ܤ
memory can be reused.

The ordering of the queue has a very meaningful impact on the performance of the algorithm. Through testing,
ordering first by depth and then by upper bound yielded the best results. This reaches a good solution quickly, and
trims more nodes earlier. If the queue is sorted by upper bound first it takes many iterations to reach the first
solution. This is because the upper bound over-estimates the true upper bound, as the upper bound of an instance is
calculated assuming perfect selection of the unknown blocks.

Metaheuristic Refinement
Branch and Bound does admirably, but does not terminate in a reasonable amount of time when the problem has
more than a few hundred blocks. The over estimation of the upper bound, coupled with the tendency for different
solutions to have very similar values means that not enough branches are trimmed, and branch and bound require
many iterations. When this happens, we halt the branch and bound and use a metaheuristic to improve the result.
Many different metaheuristics could be used: Simulated annealing, genetic algorithms, tabu search, and others.

Simulated annealing [10, 11] is reasonable. It is a randomized algorithm, wherein the current solution is repeatedly
changed. Changes which increase the objective function are always kept and changes which decrease the objective
function are accepted with decreasing probability. The ability to accept changes which make the solution worse is
used to avoid getting stuck in local optima. In the grade control classification problem simulated annealing can be
directly applied by repeatedly changing small collections of blocks, provided they do not violate the mining width.

Reducing the Problem
An important aspect of the grade control classification problem is that we know, from the beginning, what the 'best'
classification for each block is, and the maximum possible value. We used this knowledge to develop the bounding
function for the branch and bound optimization, but this can also be used to reduce the search space in the
beginning. If there are large swaths of blocks where each block has the same baseline classification, they do not
need to be evaluated in the branch and bound optimization or in any subsequent steps. Also, if this reduction leads to
several separate components, each component can be optimized independently.

The fixed regions are roughly identified by using Minkowski subtraction of each baseline classification with the
mining width element. They then are manipulated slightly to pass the mining width; details are omitted for space. In
Figure 2 we show the results of the reduction algorithm which identifies blocks which do not need to be looked at.
Both the fixed regions and the changeable regions satisfy the mining width. On the left a 2x2 mining width element
is used, and on the right a 3x3 mining width element is used.

Figure 2: Blocks which do not need to be evaluated in the optimization, with a 2x2 mining width (Left), and a 3x3

mining width (Right)

Using the 2x2 element the problem is reduced from an original 2023 blocks, or ~10ଽଷହ permutations, to 708 blocks,
or ~10ଷଷ଼ permutations. This problem is then split into three problems of 304, 9, and 395 blocks. With the 3x3
element the problem is reduced to 959 blocks, and two problems with 448 and 551 blocks each.

Practical Challenges
There are several practical challenges when implementing this algorithm. For example, the edges of the block model
and the area of interest may need to have different semantics depending on the operation. A solution may be allowed

to 'mine' outside the area of interest if it's already been mined previously but not if that area is the highwall. Also,
there may be custom constraints on a block by block basis; certain blocks might not be allowed to have certain
classifications. These constraints are handled by having three different types of constraints:

 Minable blocks allow the mining width to fit in a location.
 Each block also has a set of Allowed classifications.
 Enabled blocks are blocks which the optimizer will possibly change. For a block to be enabled it must be

both minable, and have at least two allowed classifications.

These constraints are sufficient to describe the full nature of the problem, but can lead to an unsatisfiable problem.
To identify this, the problem is formulated as a SAT problem and solved quickly with no expectation of value - this
generates either a baseline solution or a proof of unsatisfiability, which should prompt changes to the constraints.

Another challenge is with custom mining widths. The problem, as defined, allows for any arbitrary mining width
element, square, rectangular, or something different. This can be used to handle mining direction, and to customize
the algorithm for each mining operation. However, the mining element can occasionally have unexpected, cascading
effects - especially around the edges of the deposit. It is important that the mining width element 'tiles' nicely, or else
setting a block a classification could force the algorithm to set the next block that same classification, and so on.

Results
Figures 3 and 4 show the results of the algorithm on two different datasets. Misclassified blocks are shown lightly
hatched. A 3x3 and 4x4 mining width are shown for both datasets; along with an irregular angled mining element
for Dataset A, and a 5x2 mining width element for Dataset B. The results are summarized in Table 1.

Figure 3: Results on Dataset A with mining elements: 3x3 (Left), 4x4 (Center), and irregular (Right)

Figure 4: Results on Dataset B with mining elements: 3x3 (Left), 4x4 (Center), and 5x2 (Right)

Dataset A contains economic information for each block, however Dataset B does not. Dataset B only contains a
prior classification based on cutoffs, this is optimized by assigning the economic value of a correct classification 1,
and all others 0. This essentially optimizes to minimize misclassifications.

 Dataset A Dataset B
3x3 MW 4x4 MW Irregular 3x3 MW 4x4 MW 5x2 MW

Final Value $219,655 $219,369 $219,649 N/A N/A N/A
Final / Upper 99.7% 99.6% 99.7% N/A N/A N/A
Classified 1886 1849 1890 3284 3151 3293
Misclassified 137 174 133 291 424 282
Class / Blocks 93.2% 91.4% 93.4% 91.9% 88.1% 92.1%

Table 1: Summary of the Optimization Results

As the mining width element’s size increases so too does the number of misclassified blocks. The tradeoff between
selectivity and value is intuitively easy to understand, but can be hard to quantify. In Dataset A going from a 3x3
mining width to a 4x4 mining width leads to an additional 37 blocks being misclassified, but only a very minute
change in value. If the 4x4 mining width corresponds with larger equipment which can extract the material quicker,
then it may be worthwhile to accept that small loss in value. Each of the optimization runs in this analysis took less
than 30 seconds to complete.

The results from this optimization are on a block basis, but the actual mined polygons are not expected to follow
block boundaries precisely. An algorithm has been implemented to generate these minable polygons as a constrained
contouring operation where the polygons are penalized for extra vertices, short segments, and sharp angles. Details
are omitted for space, an example based on Dataset A with the 3x3 MW is shown in Figure 5.

Conclusions
This paper introduced a new algorithm for solving the grade control classification problem based, in part, on branch
and bound. This algorithm efficiently explores the large search space, and can be used with arbitrary mining width
constraints to generate optimal grade control polygons. There are many advantages to automating grade control
polygon design, such as improved operational efficiency, minimizing ore loss and dilution, and facilitating
sensitivity studies and more structured analysis.

Constrained grade control classification was shown to be NP-hard, but that does not preclude an efficient algorithm
for real world cases. The combination of exact and metaheuristic optimization described in this paper performs very
well on models with several thousand blocks and up to a dozen classification. For larger models the algorithm will
slow down, and optimality is harder to guarantee - the search space is simply too large. This algorithm should be
applied on a blast to blast basis, and if the model is still too large, reblocking could be used.

Possible avenues for improvement include accounting for blending, optimizing in the presence of uncertainty, and
incorporating operational constraints such as target tonnages. In many deposits blending is extremely important, by
blending different material types together a mine may be able to process more material, and recover more value. The
current difficulty with supporting blending is defining the precisely how blending is input to the problem, and what
effects it has on value. With uncertainty and operational constraints there are difficulties in weighting the different
components of the objective function, and in computing an accurate upper bound, but the algorithm itself is flexible
enough to handle an arbitrary objective function.

Open pit mines have a lot of opportunities to improve grade control, and optimal polygon design is a big part of that.
Engineers and geologists should be making informed decisions on how best to guide the mining operation - not
having to digitize polygons every morning.

Figure 5: Improved contouring following block optimization with a 3x3 mining width.

Acknowledgements
The author would like to thank the management of Maptek for permission to publish this paper, and acknowledge
the discussions and contributions made by the following people: D. Paek, K. Ramsay, S. Uecker, B. Ramsay, M.
Williams, R. Melito, and J. Underhill. The author would also like to acknowledge the assistance, data, and fruitful
discussions with the following members of Newmont Mining Corporation: M. Godoy, N. Kusuma, and J. Deutsch,
and the following members of Barrick Gold Corporation: J. Baar, and C. Cavasin.

Disclosure Statement
Maptek sells a commercial implementation of this algorithm in the Vulcan 10.1 software package.

References

[1] A. J. Sinclair, G. H. Blackwell, “Applied mineral inventory estimation”, Cambridge University Press, 2002
[2] E. Isaaks, I. Treloar, T Elenbaas, “Optimum dig lines for open pit grade control”, Proceedings of Ninth

International Mining Geology Conference, 2014
[3] C.T. Neufeld, K.P. Norrena & C.V. Deutsch “Guide to Geostatistical Grade Control and Dig Limit

Determination”, Centre for Computational Geostatistics, 2015
[4] J. R. Ruiseco, J. Williams & M. Kumral, “Optimizing Ore-Waste Dig-Limits as Part of Operational Mine

Planning Through Genetic Algorithms.” Natural Resources Research, 25, 473-485, 2016
[5] M. Tabesh, H. Askari-Nasab, “Automatic creation of mining polygons using hierarchical clustering

techniques”, Journal of Mining Science, 49, 426-440, 2013
[6] J. Serra, “Image analysis and mathematical morphology”, v. 1. Academic press, 1982.
[7] R. M. Karp, “Reducibility among combinatorial problems”, Complexity of Computer computations, 85-

103, 1972
[8] A. H. Land, A. G. Doig, “An automatic method of solving discrete programming problems”,

Econometrica, 497-520, 1960
[9] J. DC. Little, K. G. Murty, D. W. Dura, C. Karel, “An algorithm for the travelling salesman problem”,

Operations Research, 11, 972-989, 1963
[10] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. "Optimization by simulated annealing." Science, 671-680, 1983
[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, P. B. Kramer, “Numerical Recipes: The

Art of Scientific Computing”, 1987

