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Abstract 
 

A common casualty of modern open pit mine optimization 

is the assurance that the resulting design is actually 

achievable. Optimized mine plans that consider value and 

a bare minimum of precedence constraints do not, in 

general, translate into practical, operational mine designs 

that can be used in the field. Ultimate pits may come to a 

sharp point at the bottom. Schedules may require taking 

small parcels of material from many disparate areas of the 

pit in a single period, and grade control polygons may be 

ragged, narrow, and not minable with realistic equipment. 

In this paper all of these problems are addressed by 

encoding these three fundamental open pit mine 

optimization problems as maximum satisfiability 

problems. Maximum satisfiability provides a useful 

framework for problems that are non-linear and may 

guarantee the optimality that metaheuristics cannot. 

 

Introduction 
 

Open pit mines are large and complicated operations, 

which require significant initial and ongoing investment. A 

single mine may employ hundreds or thousands of people 

and creates substantial benefits for both the surrounding 

and global communities. Planning an operation of this 

magnitude requires a lot of effort and cannot be done 

optimally by hand. 

Mining engineers today rely on many techniques from 

operations research to guide decision making, and to 

maximize the value of the mine. Techniques including 

mixed integer linear programming, metaheuristics, and 

network algorithms are all used to solve different problems 

throughout mine design and optimization. Techniques 

based on Boolean satisfiability, including the optimization 

extension of maximum satisfiability are used in many other 

fields, including electronics design, scheduling, and 

artificial intelligence, but have not seen much use in 

mining. 

We claim that maximum satisfiability is a useful and 

meaningful way of expressing and solving optimization 

problems in mine planning. This technique does not come 

without challenges; the problem is NP-hard, and modern 

techniques for solving these problems can struggle with the 

number of variables and clauses that a typical mining 

problem requires. Also, some of the constraints that mining 

must contend with do not fit nicely into the satisfiability 

paradigm. Despite these challenges, we believe that 

maximum satisfiability provides a useful framework for 

considering operational constraints and expressing some 

problems that other techniques can't easily express. 

Maximum satisfiability can be solved exactly, yielding the 

optimal answer which metaheuristics cannot guarantee. 

In this paper we show the applicability of maximum 

satisfiability to mining by specifying three fundamental 

problems in open pit mine optimization. We show how 

these fundamental problems are formulated and how they 

are extended within the framework of maximum 

satisfiability. For the remainder of the paper we first give a 

brief background on common elements between the three 

problems and an introduction to satisfiability. Then we 

tackle the three problems; the Ultimate Pit Problem, the 

Block Scheduling Problem, and the Grade Control Polygon 

Problem. In the Ultimate Pit Problem we specifically show 

how to extend the problem to support a minimum mining 

width – a coveted result for many mining engineers. We 

then discuss some of the complexities and shortcomings of 

this framework and possible research directions. 

 

Background 
 

Block Models 

The underlying data structure for all the problems in this 

paper is a regular block model. We define the geometry of 

a block model with 9 parameters. 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, and 𝑧𝑚𝑖𝑛 

are real numbers which indicate the coordinates of the 

block model origin which is the left most, front most, 

lowest point on the block model. 𝑥𝑠𝑖𝑧, 𝑦𝑠𝑖𝑧, and 𝑧𝑠𝑖𝑧 are 
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real numbers which indicate the size of the blocks. 𝑥𝑛𝑢𝑚, 

𝑦𝑛𝑢𝑚, 𝑧𝑛𝑢𝑚 are positive integers which indicate how 

many blocks there are in the x, y, and z direction. These 

parameters are shown in Figure 1 below. 

 

 
Figure 1. Description of a regular 3D block model and its 

defining parameters. 

 

Each block is identified in two ways; Using three 

indices; 𝑖𝑥, 𝑖𝑦, and 𝑖𝑧 which are indices in the 𝑥, 𝑦, and 𝑧 

directions respectively or by using a single index 𝑖𝑑𝑥 

which counts first along x, then y, and then z. For the three 

indices, the 𝑖𝑥 index increases in the x direction from 0 to 

𝑥𝑛𝑢𝑚 − 1, the 𝑖𝑦 index increases in the y direction from 0 

to 𝑦𝑛𝑢𝑚 − 1, and the 𝑖𝑧 index increases in the z direction 

from 0 to 𝑧𝑛𝑢𝑚 − 1. We calculate the one-dimensional 

grid index 𝑖𝑑𝑥 from the three indices as: 

 

𝑖𝑑𝑥 = 𝑖𝑥 + 𝑖𝑦 × 𝑥𝑛𝑢𝑚 + 𝑖𝑧 × 𝑥𝑛𝑢𝑚 × 𝑦𝑛𝑢𝑚 

 

The three grid indices are calculated from the one-

dimensional grid index as follows, where / and % are 

integer division (truncates) and the modulus respectively: 

 

𝑖𝑥 = 𝑖𝑑𝑥 % 𝑥𝑛𝑢𝑚 

𝑖𝑦 = (𝑖𝑑𝑥 𝑥𝑛𝑢𝑚)⁄  % 𝑦𝑛𝑢𝑚 

𝑖𝑧 = 𝑖𝑑𝑥 (𝑥𝑛𝑢𝑚 × 𝑦𝑛𝑢𝑚)⁄  

 

Each block can hold several different attributes such 

as a metal grade or rock type, but in this paper, we are 

primarily interested in economic block values which have 

units of dollars per ton or dollars. These values indicate the 

profit of extracting this block, or the profit of sending a 

block to a given destination. The economic block value is 

calculated as revenues less costs, but it is often not that 

simple in practice as the mine must consider different 

processes, blending, royalties, recoveries, geometallurgical 

properties and more. 

 

 

Precedence Constraints 

In the Ultimate Pit Problem and the Block Scheduling 

Problem we must consider the precedence constraints. 

Precedence constraints encode the physical relationships 

between blocks and the notion that this block cannot be 

mined until all these other blocks are mined. Typically, we 

connect each block to a set of blocks above it in a pattern. 

There are several patterns which are often considered. 

In their seminal 1965 paper, Lerchs and Grossmann 

proposed two simplistic precedence patterns for three-

dimensional block models (A and B in Figure 2) [1].  

Gilbert (1966), developed the 1:5:9 pattern where the 

precedence pattern varies by level with each block either 

connected to the five blocks above it in a cross, or the nine 

blocks above it in a square (C in Figure 2) [2]. Lipkewich 

and Borgman (1969) introduced the "knight's move" 

pattern which roughly approximates 45 degrees (D in 

Figure 2) [3]. 

 

 
Figure 2. Possible precedence patterns. A, B from Lerchs 

and Grossmann 1965. C (1:5:9 pattern) from Gilbert 

(1966). D (Knight’s move pattern) from Lipkewich and 

Borgman (1969). 

 

Often the pit slopes are not constant throughout the 

deposit because of geotechnical constraints, and the slopes 

vary by location and direction. There are several 

techniques for locally varying slope constraints including 

Chen (1976), Khalokakaie and Dowd (2000), and Caccetta 

and Giannini (1988) [4,5,6].  

Whatever the pattern is, the set of entire precedence 

constraints comes from considering the given pattern 

across all blocks and handling any edge effects. That is, the 

set of all precedence constraints 𝑷, contains pairs of block 

indices (𝑎, 𝑏), which indicate that if we want to mine block 

𝑎 we must first mine block 𝑏. 

 

Satisfiability 

In this section, we briefly review the history of 

satisfiability, present the standard form for satisfiability 
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problems, and show a few examples. 'Satisfiability' or 

'SAT' is the abbreviated form of the 'Boolean Satisfiability 

Problem', which is sometimes also called the 'Propositional 

Satisfiability Problem'. We are specifically interested in the 

optimization extension; the 'Maximum Satisfiability 

Problem' or 'Max-SAT'. 

Satisfiability has its roots in classical studies of logic 

from millennia ago. In more recent times Alfred Tarski, 

Claude Shannon, and many others have developed and 

formalized the field [7, 8]. In our context Davis and 

Putnam’s work in 1958 really started things off by using 

the Conjunctive Normal Form and providing the Davis-

Putnam procedure to evaluate satisfiability formulas [9]. 

Many more researchers have expanded on the Davis 

Putnam Procedure, most notably Loveland and Logemann 

who worked to extend the procedure into the seminal Davis 

Putnam Loveland Logemann (DPLL) algorithm for 

determining if there is a solution to a given Boolean 

formula [10]. Franco (2009) provides a comprehensive 

history of the field [11]. 

Boolean satisfiability problems work with an infinite 

set of Boolean variables Χ. A single literal 𝑙 is some 

variable 𝑋𝑖 ∈ Χ or it's negation ¬𝑋𝑖. A clause 𝐶 is a 

disjunction of literals, as 𝐶 = 𝑙1 ∨ 𝑙2 ∨ … ∨ 𝑙𝑘. A SAT 

formula 𝜙 is a conjunction of clauses, as 𝜙 = 𝐶1 ∧ 𝐶2 ∧

… ∧ 𝐶𝑚. This format for expressing Boolean formulas is 

called Conjunctive Normal Form, or CNF. It may seem 

restrictive, but many problems are easily expressed in CNF 

and all propositional formula can be converted into CNF 

[12]. 

We seek an assignment of values to each variable that 

satisfies the original formula. Because the formula is in 

conjunctive normal form, every clause must be satisfied. 

Then, for a single clause to be satisfied at least one literal 

must be satisfied. For a literal to be satisfied the assigned 

value must be true if the literal is 𝑋, or false if the literal is 

¬𝑋. For example, the following Boolean satisfiability 

formula is satisfied with the assignment 𝑋1 ← false, 𝑋2 ←

false, 𝑋3 ← true. But it is not satisfied with any other 

assignment. 

𝜙1 = (𝑋1 ∨ ¬𝑋2) ∧ (𝑋2 ∨ 𝑋3) ∧ (¬𝑋1 ∨ ¬𝑋3) ∧ 

(¬𝑋1 ∨ ¬𝑋2 ∨ 𝑋3) 

 

There could be formulas where there is no solution, for 

example: 

 

𝜙2 = (𝑋1 ∨ 𝑋2) ∧
(¬𝑋1 ∨ 𝑋2) ∧
(𝑋1 ∨ ¬𝑋2) ∧
(¬𝑋1 ∨ ¬𝑋2)

 

Note how the above formula systematically rules out 

all four of the possible true or false assignments to two 

variables. This formula is unsatisfiable. There is no 

assignment to the literals which will satisfy all the clauses. 

The result from solving a Boolean satisfiability 

problem is either ‘SAT’, which indicates that the formula 

is satisfiable and has an appropriate assignment, or 

‘UNSAT’, in which case the formula is unsatisfiable, and 

no assignment exists. This has many uses in circuit design, 

automatic theorem proving, dependency management, and 

other fields, but is less obviously useful in mining. We are 

generally not only looking for any design that satisfies our 

constraints, but instead we want the optimal design. For 

this we will need to extend Boolean satisfiability. 

In Maximum Satisfiability we associate each clause 

with a weight, so the clause becomes a pair (𝐶, 𝑤) where 

the weight is a natural number or infinity. In this paper if 

the weight is infinity we will omit the weight to save space. 

We consider the weight equivalently as either the benefit 

for satisfying the clause or the penalty for not satisfying the 

clause, with our goal being equivalently finding the 

assignment that maximizes the overall benefit or 

minimizes the overall penalty. We consider the clauses 

with infinite weight as hard clauses in that they must be 

satisfied, and clauses with a natural weight are soft clauses.  

We can revisit the above unsatisfiable formula above 

and add weights as follows: 

 

𝜙3 = (𝑋1 ∨ 𝑋2, ∞) ∧
(¬𝑋1 ∨ 𝑋2, 1) ∧
(𝑋1 ∨ ¬𝑋2, 5) ∧
(¬𝑋1 ∨ ¬𝑋2, 4)

 

 

There are now 3 different solutions to this problem, 

note how the infinite weight clause makes 𝑋1 ← false, 

𝑋2 ← false unsatisfying. The best assignment is 𝑋1 ←

true, 𝑋2 ← false. For equivalently a penalty of 1, or a total 

benefit of 9. This is a Weighted Partial MAX-SAT problem 

and is the format for the problems in this paper. 

This format is used in a variety of other large-scale 

applications. Marques-Silva provides a review of practical 

applications of Boolean satisfiability to a variety of 

problems including artificial intelligence, model checking, 

and electronic circuit design [13]. Berg et al provide 

realistic benchmarks and applications of maximum 

satisfiability to three problems in data analysis [14]. This 

format lends itself to a wide range of research areas, and 

now we will apply it to mining. 
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Ultimate Pit Problem 
 

The Ultimate Pit Problem is to determine the final pit 

contour such that the mine extracts all the economic ore 

and leaves any unnecessary waste in place. This problem 

ignores complexities such as the time value of money and 

any mining or mill capacities. It is simplistic by today's 

standards but is still useful in practice. It can be used to 

help decide where to develop permanent infrastructure, 

help limit the size of the scheduling problem, and to 

roughly evaluate mine life and project economics. The 

ultimate pit problem is schematically shown in Figure 3, 

with the normal pit limits on the left, and the augmented 

results considering a minimum mining width on the right. 

Lerchs and Grossmann were the first authors to 

describe the Ultimate Pit Problem in 1965 [1]. In their 

paper, Lerchs and Grossmann developed a graph-based 

algorithm to solve the Ultimate Pit Problem which 

remained in use in the mining industry until within the last 

decade or so. Lerchs and Grossmann indicated that the 

problem could be expressed as a flow problem but 

recommended their graph-based algorithm instead. In 1968 

Johnson also showed that the Ultimate Pit Problem could 

be expressed as a linear program, and that the dual of this 

LP model is a flow problem [15].  

This transformation of the Ultimate Pit Problem into a 

flow problem proves extremely advantageous. Flow based 

algorithms are many times faster than the graph based 

Lerchs and Grossmann algorithm and yield precisely the 

same results. Push-Relabel (Goldberg and Tarjan, 1988), 

and Pseudoflow (Hochbaum 2001), are two sophisticated 

flow-based algorithms that are commonly used [16, 17]. In 

a recent study (Deutsch 2014), Pseudoflow was the fastest 

algorithm considered for the ultimate pit problem [18]. In 

this paper we provide yet another, slower, means of 

expressing the Ultimate Pit Problem, but this time in terms 

of maximum satisfiability.  

The ultimate pit problem is encoded into maximum 

satisfiability simply. For each block in the block model, 

𝐵𝑀, add a variable 𝑋𝑖, this variable indicates if the block 

is mined 𝑋𝑖 ← true or is left in place 𝑋𝑖 ← false. Also add 

a length 1 clause for each block with the block's variable, 

and a weight equal to the economic block value. Then for 

each precedence constraint add a length 2 clause with 

infinite weight of the form (¬𝑎 ∨ 𝑏) for each precedence 

relationship where 𝑎 depends on 𝑏. The encoding is: 

 

𝜙𝑈𝑃𝑃 = ⋀ (𝑋𝑖 , 𝐸𝐵𝑉𝑖)

𝑖∈𝐵𝑀

⋀ (¬𝑋𝑖 ∨ 𝑋𝑗)

𝑖,𝑗∈𝑷

 

 

This encoding is appealing because it is straight-

forward and simple and because it leads to precisely the 

same results as the flow-based solution, but, it is not 

practically very useful yet. We have just shown a slower, 

and less efficient way of representing the Ultimate Pit 

Problem. The value of this encoding comes from how 

simply we can add a minimum mining width constraint. 

The purpose of the minimum mining width constraint 

is to avoid the greedy tendency of the calculated ultimate 

pit to come to a sharp point at the bottom of the pit that 

equipment could not even fit into. Mining engineers are 

used to handling this constraint manually when designing 

the pushbacks, but it can be difficult to optimally decide 

between chopping of the blocks that do not satisfy the 

minimum mining width or expanding the pit manually. 

 

 

 
Figure 3. The Ultimate Pit Problem. Left: the ultimate pit as calculated with Pseudoflow. Right: the ultimate pit as calculated 

with maximum satisfiability with a mining width of 12 blocks. Model is colored by economic block value. 
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We encode the minimum mining width by considering 

a structuring element. This term, borrowed from 

mathematical morphology, refers to a small shape or 

collection of blocks which is generally very simple, such 

as a 3 x 3 square or a small cross. This structuring element 

is then scanned over the entire block model, and for each 

location in the block model we add an additional variable 

𝑚𝑤𝑙  to the encoding, and a series of infinite weight clauses 

which enforce that this variable is true if and only if all the 

blocks which belong to it are true. Then, for each block in 

the model we add an infinite weight clause which says 

either this block is not mined, or at least one of overlapping 

mining width variables is true. That is, given a collection 

of mining width sets 𝑺 augment the encoding as follows: 

 

𝜙𝑈𝑃𝑃𝑀𝑊 = 𝜙𝑈𝑃𝑃 ∧  

⋀(¬𝑚𝑤𝑙 ∨ 𝑋𝑖)

𝑖∈𝑺𝑙

∀𝑙 ∈ 𝑺

⋀ (¬𝑋𝑖 ∨ 𝑚𝑤𝑙 ∨ … ∨ 𝑚𝑤𝑛)

𝑖∈𝐵𝑀

 

 

 

The following example, Figure 4, shows a very small 

example of the encoding with only 7 blocks (a … g). For 

brevity the mining width constraint is only added to the 

bottom bench of three blocks. A 2 block mining width is 

considered, so there are 2 mw variables (𝑚𝑤1, 𝑚𝑤2). The 

precedence constraints are shown with arrows, and the 

economic block values are in the nodes. 

The full encoding of this ultimate pit problem 

considering a minimum mining width constraint into 

maximum satisfiability is as follows: 

 

𝜙𝑒𝑥 = (¬𝑎, 3) ∧ (¬𝑏, 2) ∧ (¬𝑐, 3) ∧ (¬𝑑, 3) ∧
(𝑒, 1) ∧ (𝑓, 6) ∧ (𝑔, 2) ∧

(¬𝑒 ∨ 𝑎) ∧ (¬𝑒 ∨ 𝑏) ∧
(¬𝑓 ∨ 𝑏) ∧ (¬𝑓 ∨ 𝑐) ∧

(¬𝑔 ∨ 𝑐) ∧ (¬𝑔 ∨ 𝑑) ∧

(¬𝑚𝑤1 ∨ 𝑒) ∧ (¬𝑚𝑤1 ∨ 𝑓) ∧

(¬𝑚𝑤1 ∨ 𝑓) ∧ (¬𝑚𝑤1 ∨ 𝑔) ∧

(¬𝑒 ∨ 𝑚𝑤1) ∧
(¬𝑓 ∨ 𝑚𝑤1 ∨ 𝑚𝑤2) ∧

(¬𝑔 ∨ 𝑚𝑤2)

 

 
Figure 4: Minimum example of the Ultimate Pit Problem 

with a minimum mining width encoded in Maximum 

Satisfiability. 

 

Block Scheduling Problem 
 

In the Block Scheduling Problem, we are not only 

concerned with which blocks to mine, but also when to 

mine them. This problem is shown schematically in Figure 

5. Lerchs and Grossmann recommended a technique they 

called parametric analysis whereby the volume of the pit 

was successively reduced, by reducing the block values, to 

achieve a sequence that they claimed would maximize the 

integral of the cash flow [1]. Additional early work in this 

area by Dagdelen and Johnson (1986), worked to maximize 

net present value subject to production constraints by using 

a Lagrangian relaxation of the problem [19]. This is a 

heavily researched problem with many exact and 

metaheuristic approaches; Newman (2010) provides an 

overview [20]. 

In the Block Scheduling Problem, we consider a set of 

variables 𝑋𝑖,𝑡 for each block 𝑖 ∈ 𝐵𝑀, these variables 

indicate if the block is mined in time period 𝑡 ∈ 𝑇. We add 

hard clauses to ensure that the block is mined in at most 

one time period. The length 1 clauses representing the 

block's value are modified to account for the time value of 

money. Then we relax the precedence constraints to say 

that a block satisfies precedence if the above block is mined 

in either the same or any earlier period. For resource 

constraints we add Pseudo Boolean (PB) constraints which 

are of the form: 

 

∑ 𝑤𝑖𝑙𝑖 ≤ 𝑘 

 

Where 𝑤𝑖  is a positive integer weight (in this case 

tonnage of the block), 𝑙𝑖 are the Boolean variables, and k is 

a positive integer which is the upper limit. A lower limit 

can be similarly encoded. This gives us the following Max 

SAT formulation of the block scheduling problem. 
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Figure 5. Block Scheduling Problem. Left: Sequence not considering mining width Right: The sequence considering a 

minimum mining width / pushback width of 12 blocks. 

 

𝜙𝐵𝑆𝑃 = ⋀ (𝑋𝑖,𝑡 , 𝐷𝐸𝐵𝑉𝑖,𝑡)

𝑖∈𝐵𝑀

 

⋀ ⋀(¬𝑋𝑖,𝑡 ∨ 𝑋𝑗,1 ∨ … ∨ 𝑋𝑗,𝑡)

𝑡∈𝑇𝑖∈𝐵𝑀

 

⋀ ⋀ ⋀ (¬𝑋𝑖,𝑗 ∨ ¬𝑋𝑖,𝑘)

|𝑇|

𝑘=𝑗+1

|𝑇|−1

𝑗=1𝑖∈𝐵𝑀

 

∑ 𝑤𝑖𝑋𝑖,𝑡 ≤ 𝑅𝐶𝑡

𝑖∈𝐵𝑀

∀𝑡 ∈ 𝑇

 

 

Where 𝑅𝐶𝑡 is the maximum tonnage mined in a given 

time period. This is a very simplistic formulation of the 

block scheduling problem, with only precedence 

constraints, and an overall mining constraint – but we could 

consider several extensions. Some standard attributes of a 

block scheduling problem, including blending, stockpiling, 

and managing head grades, are not so easy to consider in a 

pure maximum satisfiability model. We should do more 

research to develop appropriate encodings. 

Note that there are many techniques for encoding 

pseudo Boolean constraints in SAT. If we say that all 

blocks have a constant tonnage we can use cardinality 

constraints of which there are several described in Frisch 

(2010) [19]. If the tonnages are different on a block basis 

we can use another technique such as those described in 

Eén (2006), or the generalized totalizer encoding from 

Joshi (2015) [22, 23] 

Again, we are not content with the above encoding, 

and should add the mining width constraint as in the 

ultimate pit problem. Pourrahimian 2009 provide two 

mixed integer linear programming formulations for the 

block scheduling problem that contain considerations for a 

minimum mining width [24]. In the first each block is 

constrained to have a certain number of its neighbors 

extracted in the same period, and in the second they 

aggregate the blocks before the optimization. Neither of 

these consider minimum mining width structuring 

elements the way that we are doing here. 

We can add the mining width constraint accounting for 

the minimum mining width structuring element as 

described above, however, we have a few options. We 

could say that a mining width variable is true if the blocks 

within the structuring element are mined in any period. 

This effectively ensures that the final pit limits satisfy a 

minimum mining width. We could also say that a block 

only satisfies the mining width constraint if all the blocks 

are mined in the same period. This ensures a minimum 

pushback width as shown in Figure 5. This avoids a 

common problem in block scheduling where algorithms 

will greedily move the pit wall a very short distance. 

 

Grade Control Polygon Problem 
 

The last problem addressed is the problem of creating 

optimal, and minable, polygons in open pit grade control. 

Grade control in open pit mines is a large process with 

many different aspects including sampling, estimating, 

classifying and mining material. The Grade Control 

Polygon Problem only covers the classification part of 

grade control, in that we are given a block model which 

represents the area of interest with geologic attributes 

already sampled and estimated. We must then classify the 

material so that we maximize the economic and ensure that 

the resulting classification is practical and could be 

extracted by reasonably sized equipment. 

The Grade Control Polygon Problem has been 

expressed in a variety of ways and solved with a variety of 

algorithms including those based on meta heuristics such 

as simulated annealing [25, 26], genetic algorithms [27], or 

hierarchical techniques [28], but also exact techniques such 

as branch and bound [29]. An overview of the problem is 

shown in Figure 6.
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Figure 6. The Grade Control Polygon Problem. Left: Input to the grade control polygon problem, economic values for each 

classification for each block. Right: Output, each block assigned to the best classification such that a 3x3 mining width is 

honored and economic value is maximized, reclassified blocks are colored darker. 

 

In the Grade Control Polygon Problem we consider 

Boolean variables 𝑋𝑖,𝑐 with one for each block 𝑖 ∈ 𝐵𝑀 and 

each classification 𝑐 ∈ 𝐶. Again, we add hard clauses to 

indicate that each block has at most a single classification, 

but we also add a clause to enforce that each block has one 

classification. In the Block Scheduling Problem it was 

possible for the block to not be mined, but that is not an 

option here. We add length 1 soft clauses to encode the 

value of the different classifications. 

We encode the mining width constraint for this 

problem in the same way as for the previous problems. We 

add a set of mining width variables, one for each mining 

width structuring element location and for each 

classification. A given mining width variable is 

constrained, by hard clauses, to be true if an only if all the 

blocks inside of it are sent to the same destination. Then for 

every block we say that there must be at least one mining 

width set variable that is true. This is summarized below. 

 

𝜙𝐺𝐶𝑃𝑃 = ⋀ ⋀(𝑋𝑖,𝑐 , 𝐸𝐵𝑉𝑖,𝑐)

𝑐∈𝐶𝑖∈𝐵𝑀

⋀ (⋁ 𝑋𝑖,𝑐)

𝑐∈𝐶𝑖∈𝐵𝑀

⋀ ⋀ ⋀ (¬𝑋𝑖,𝑗 ∨ ¬𝑋𝑖,𝑘)

|𝐶|

𝑘=𝑗+1

|𝐶|−1

𝑗=1𝑖∈𝐵𝑀

 

⋀(¬𝑚𝑤𝑙,𝑐 ∨ 𝑋𝑖,𝑐)

𝑖∈𝑺𝑙

⋀ (¬𝑋𝑖,𝑐 ∨ 𝑚𝑤𝑙 ∨ … ∨ 𝑚𝑤𝑛)

𝑖∈𝐵𝑀

 

 

The above encoding presumes that there is at most 

about 7 different classifications for each block, or else the 

binomial clauses to ensure at most one classification per 

block will become unwieldy. Again, this is a pseudo 

Boolean constraint and could be encoded in several 

different ways as discussed in the Block Scheduling 

Problem. 

 

Discussion 
 

These encodings are fundamentally quite simple, with 

reasonably few clauses of similar form, but as the input 

grows the problem grows rapidly. Especially for the block 

scheduling problem and the grade control polygon 

problem, as the number of time periods, and number of 

destinations grow the problem gets substantially harder. 

This is vitally important because the Max-SAT problem is 

NP-complete, and there are no known polynomial 

algorithms available. 

There are many different techniques for solving Max 

SAT problems, and it is not immediately clear which of 

these techniques is most suitable to our mining problems. 

There are broadly two main classifications of Max SAT 

solvers; incomplete and complete. A complete solver if 
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given enough time will give the single exact optimal result 

along with a certificate of optimality. Incomplete solvers 

do not guarantee that the optimal result is found but may 

give higher quality results quicker or may handle larger 

problems. There are then many different further classes 

within these complete and incomplete solvers. 

It is interesting to note that Max SAT problems can be 

translated into a mixed integer linear program and solved 

as such. That is, we have opportunities to use sophisticated 

solvers and features of a mixed integer linear program if it 

is advantageous.  

The Pseudo Boolean constraints, that are used in the 

Block Scheduling and Grade Control Polygon problems 

are sometimes directly supported by solvers to further 

exploit their form. Solvers which support this may do very 

well on these specific problems. We have not yet 

performed a full comparison of the many different solution 

techniques. An initial review has found that many of the 

complete solvers are not immediately applicable to full 

problems. They are too slow, or the problems are too big. 

This is an area for future research. 

There is a lot of opportunity for reducing the problem 

size through appropriate analysis or splitting the problem 

up into smaller problems that are solved independently. 

There are opportunities for using combined techniques 

where heuristics that exploit the structure of the problem 

are used to provide initial solutions, or to improve 

intermediate solutions. There could also be better 

encodings of the problems that have less variables or 

clauses, however due to the great sophistication of modern 

SAT solvers this may or may not lead to increased 

performance, the encodings would have to be 

experimentally validated. 

We have examined the Grade Control Polygon 

problem in detail and have used our encoding extensively 

on real problems. A commercial implementation of this 

encoding (with additional improvements) is available and 

is currently in use at several different mines [29, 30]. The 

encodings of the Ultimate Pit Problem and the Block 

Scheduling Problem are still in the early research phase. 

 

Conclusion 
 

We have proposed alternate encodings to three 

fundamental problems in open pit mine optimization using 

maximum satisfiability. Maximum satisfiability has 

proven useful in allowing us to consider more operational 

constraints and create mine designs that are more realistic. 

That is, with Maximum satisfiability we can explicitly 

optimize with a mining width constraint. It is not clear yet 

whether these encodings are scalable to full size mining 

problems, or what sort of work needs to be done – we have 

provided at least a base framework, and some avenues to 

explore. 

One of the advantages of maximum satisfiability in 

general is that it is very useful outside of the mining 

industry. Many other fields use these solvers and are 

continuously working on them and improving them. Here 

in the mining industry, we should try to take advantage of 

this and apply these results to our problems and help us to 

make better decisions, design better mines, and create more 

value. 

Currently, except for the Grade Control Polygon 

problem, this introductory work is not suitable for 

immediate application on full size realistic problems. 

Additional research must be done to fully evaluate the 

different solvers, the different options, and the different 

optimizations that can be done to see if this work can have 

real practical significance beyond toy problems. 
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