
1

OPEN PIT MINE OPTIMIZATION WITH

MAXIMUM SATISFIABILITY

Matthew Deutsch, Colorado School of Mines, Golden, CO

mvdeutsch@mines.edu

Abstract

A common casualty of modern open pit mine optimization

is the assurance that the resulting design is actually

achievable. Optimized mine plans that consider value and

a bare minimum of precedence constraints do not, in

general, translate into practical, operational mine designs

that can be used in the field. Ultimate pits may come to a

sharp point at the bottom. Schedules may require taking

small parcels of material from many disparate areas of the

pit in a single period, and grade control polygons may be

ragged, narrow, and not minable with realistic equipment.

In this paper all of these problems are addressed by

encoding these three fundamental open pit mine

optimization problems as maximum satisfiability

problems. Maximum satisfiability provides a useful

framework for problems that are non-linear and may

guarantee the optimality that metaheuristics cannot.

Introduction

Open pit mines are large and complicated operations,

which require significant initial and ongoing investment. A

single mine may employ hundreds or thousands of people

and creates substantial benefits for both the surrounding

and global communities. Planning an operation of this

magnitude requires a lot of effort and cannot be done

optimally by hand.

Mining engineers today rely on many techniques from

operations research to guide decision making, and to

maximize the value of the mine. Techniques including

mixed integer linear programming, metaheuristics, and

network algorithms are all used to solve different problems

throughout mine design and optimization. Techniques

based on Boolean satisfiability, including the optimization

extension of maximum satisfiability are used in many other

fields, including electronics design, scheduling, and

artificial intelligence, but have not seen much use in

mining.

We claim that maximum satisfiability is a useful and

meaningful way of expressing and solving optimization

problems in mine planning. This technique does not come

without challenges; the problem is NP-hard, and modern

techniques for solving these problems can struggle with the

number of variables and clauses that a typical mining

problem requires. Also, some of the constraints that mining

must contend with do not fit nicely into the satisfiability

paradigm. Despite these challenges, we believe that

maximum satisfiability provides a useful framework for

considering operational constraints and expressing some

problems that other techniques can't easily express.

Maximum satisfiability can be solved exactly, yielding the

optimal answer which metaheuristics cannot guarantee.

In this paper we show the applicability of maximum

satisfiability to mining by specifying three fundamental

problems in open pit mine optimization. We show how

these fundamental problems are formulated and how they

are extended within the framework of maximum

satisfiability. For the remainder of the paper we first give a

brief background on common elements between the three

problems and an introduction to satisfiability. Then we

tackle the three problems; the Ultimate Pit Problem, the

Block Scheduling Problem, and the Grade Control Polygon

Problem. In the Ultimate Pit Problem we specifically show

how to extend the problem to support a minimum mining

width – a coveted result for many mining engineers. We

then discuss some of the complexities and shortcomings of

this framework and possible research directions.

Background

Block Models

The underlying data structure for all the problems in this

paper is a regular block model. We define the geometry of

a block model with 9 parameters. 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, and 𝑧𝑚𝑖𝑛

are real numbers which indicate the coordinates of the

block model origin which is the left most, front most,

lowest point on the block model. 𝑥𝑠𝑖𝑧, 𝑦𝑠𝑖𝑧, and 𝑧𝑠𝑖𝑧 are

2

real numbers which indicate the size of the blocks. 𝑥𝑛𝑢𝑚,

𝑦𝑛𝑢𝑚, 𝑧𝑛𝑢𝑚 are positive integers which indicate how

many blocks there are in the x, y, and z direction. These

parameters are shown in Figure 1 below.

Figure 1. Description of a regular 3D block model and its

defining parameters.

Each block is identified in two ways; Using three

indices; 𝑖𝑥, 𝑖𝑦, and 𝑖𝑧 which are indices in the 𝑥, 𝑦, and 𝑧

directions respectively or by using a single index 𝑖𝑑𝑥

which counts first along x, then y, and then z. For the three

indices, the 𝑖𝑥 index increases in the x direction from 0 to

𝑥𝑛𝑢𝑚 − 1, the 𝑖𝑦 index increases in the y direction from 0

to 𝑦𝑛𝑢𝑚 − 1, and the 𝑖𝑧 index increases in the z direction

from 0 to 𝑧𝑛𝑢𝑚 − 1. We calculate the one-dimensional

grid index 𝑖𝑑𝑥 from the three indices as:

𝑖𝑑𝑥 = 𝑖𝑥 + 𝑖𝑦 × 𝑥𝑛𝑢𝑚 + 𝑖𝑧 × 𝑥𝑛𝑢𝑚 × 𝑦𝑛𝑢𝑚

The three grid indices are calculated from the one-

dimensional grid index as follows, where / and % are

integer division (truncates) and the modulus respectively:

𝑖𝑥 = 𝑖𝑑𝑥 % 𝑥𝑛𝑢𝑚

𝑖𝑦 = (𝑖𝑑𝑥 𝑥𝑛𝑢𝑚)⁄ % 𝑦𝑛𝑢𝑚

𝑖𝑧 = 𝑖𝑑𝑥 (𝑥𝑛𝑢𝑚 × 𝑦𝑛𝑢𝑚)⁄

Each block can hold several different attributes such

as a metal grade or rock type, but in this paper, we are

primarily interested in economic block values which have

units of dollars per ton or dollars. These values indicate the

profit of extracting this block, or the profit of sending a

block to a given destination. The economic block value is

calculated as revenues less costs, but it is often not that

simple in practice as the mine must consider different

processes, blending, royalties, recoveries, geometallurgical

properties and more.

Precedence Constraints

In the Ultimate Pit Problem and the Block Scheduling

Problem we must consider the precedence constraints.

Precedence constraints encode the physical relationships

between blocks and the notion that this block cannot be

mined until all these other blocks are mined. Typically, we

connect each block to a set of blocks above it in a pattern.

There are several patterns which are often considered.

In their seminal 1965 paper, Lerchs and Grossmann

proposed two simplistic precedence patterns for three-

dimensional block models (A and B in Figure 2) [1].

Gilbert (1966), developed the 1:5:9 pattern where the

precedence pattern varies by level with each block either

connected to the five blocks above it in a cross, or the nine

blocks above it in a square (C in Figure 2) [2]. Lipkewich

and Borgman (1969) introduced the "knight's move"

pattern which roughly approximates 45 degrees (D in

Figure 2) [3].

Figure 2. Possible precedence patterns. A, B from Lerchs

and Grossmann 1965. C (1:5:9 pattern) from Gilbert

(1966). D (Knight’s move pattern) from Lipkewich and

Borgman (1969).

Often the pit slopes are not constant throughout the

deposit because of geotechnical constraints, and the slopes

vary by location and direction. There are several

techniques for locally varying slope constraints including

Chen (1976), Khalokakaie and Dowd (2000), and Caccetta

and Giannini (1988) [4,5,6].

Whatever the pattern is, the set of entire precedence

constraints comes from considering the given pattern

across all blocks and handling any edge effects. That is, the

set of all precedence constraints 𝑷, contains pairs of block

indices (𝑎, 𝑏), which indicate that if we want to mine block

𝑎 we must first mine block 𝑏.

Satisfiability

In this section, we briefly review the history of

satisfiability, present the standard form for satisfiability

3

problems, and show a few examples. 'Satisfiability' or

'SAT' is the abbreviated form of the 'Boolean Satisfiability

Problem', which is sometimes also called the 'Propositional

Satisfiability Problem'. We are specifically interested in the

optimization extension; the 'Maximum Satisfiability

Problem' or 'Max-SAT'.

Satisfiability has its roots in classical studies of logic

from millennia ago. In more recent times Alfred Tarski,

Claude Shannon, and many others have developed and

formalized the field [7, 8]. In our context Davis and

Putnam’s work in 1958 really started things off by using

the Conjunctive Normal Form and providing the Davis-

Putnam procedure to evaluate satisfiability formulas [9].

Many more researchers have expanded on the Davis

Putnam Procedure, most notably Loveland and Logemann

who worked to extend the procedure into the seminal Davis

Putnam Loveland Logemann (DPLL) algorithm for

determining if there is a solution to a given Boolean

formula [10]. Franco (2009) provides a comprehensive

history of the field [11].

Boolean satisfiability problems work with an infinite

set of Boolean variables Χ. A single literal 𝑙 is some

variable 𝑋𝑖 ∈ Χ or it's negation ¬𝑋𝑖. A clause 𝐶 is a

disjunction of literals, as 𝐶 = 𝑙1 ∨ 𝑙2 ∨ … ∨ 𝑙𝑘. A SAT

formula 𝜙 is a conjunction of clauses, as 𝜙 = 𝐶1 ∧ 𝐶2 ∧

… ∧ 𝐶𝑚. This format for expressing Boolean formulas is

called Conjunctive Normal Form, or CNF. It may seem

restrictive, but many problems are easily expressed in CNF

and all propositional formula can be converted into CNF

[12].

We seek an assignment of values to each variable that

satisfies the original formula. Because the formula is in

conjunctive normal form, every clause must be satisfied.

Then, for a single clause to be satisfied at least one literal

must be satisfied. For a literal to be satisfied the assigned

value must be true if the literal is 𝑋, or false if the literal is

¬𝑋. For example, the following Boolean satisfiability

formula is satisfied with the assignment 𝑋1 ← false, 𝑋2 ←

false, 𝑋3 ← true. But it is not satisfied with any other

assignment.

𝜙1 = (𝑋1 ∨ ¬𝑋2) ∧ (𝑋2 ∨ 𝑋3) ∧ (¬𝑋1 ∨ ¬𝑋3) ∧

(¬𝑋1 ∨ ¬𝑋2 ∨ 𝑋3)

There could be formulas where there is no solution, for

example:

𝜙2 = (𝑋1 ∨ 𝑋2) ∧
(¬𝑋1 ∨ 𝑋2) ∧
(𝑋1 ∨ ¬𝑋2) ∧
(¬𝑋1 ∨ ¬𝑋2)

Note how the above formula systematically rules out

all four of the possible true or false assignments to two

variables. This formula is unsatisfiable. There is no

assignment to the literals which will satisfy all the clauses.

The result from solving a Boolean satisfiability

problem is either ‘SAT’, which indicates that the formula

is satisfiable and has an appropriate assignment, or

‘UNSAT’, in which case the formula is unsatisfiable, and

no assignment exists. This has many uses in circuit design,

automatic theorem proving, dependency management, and

other fields, but is less obviously useful in mining. We are

generally not only looking for any design that satisfies our

constraints, but instead we want the optimal design. For

this we will need to extend Boolean satisfiability.

In Maximum Satisfiability we associate each clause

with a weight, so the clause becomes a pair (𝐶, 𝑤) where

the weight is a natural number or infinity. In this paper if

the weight is infinity we will omit the weight to save space.

We consider the weight equivalently as either the benefit

for satisfying the clause or the penalty for not satisfying the

clause, with our goal being equivalently finding the

assignment that maximizes the overall benefit or

minimizes the overall penalty. We consider the clauses

with infinite weight as hard clauses in that they must be

satisfied, and clauses with a natural weight are soft clauses.

We can revisit the above unsatisfiable formula above

and add weights as follows:

𝜙3 = (𝑋1 ∨ 𝑋2, ∞) ∧
(¬𝑋1 ∨ 𝑋2, 1) ∧
(𝑋1 ∨ ¬𝑋2, 5) ∧
(¬𝑋1 ∨ ¬𝑋2, 4)

There are now 3 different solutions to this problem,

note how the infinite weight clause makes 𝑋1 ← false,

𝑋2 ← false unsatisfying. The best assignment is 𝑋1 ←

true, 𝑋2 ← false. For equivalently a penalty of 1, or a total

benefit of 9. This is a Weighted Partial MAX-SAT problem

and is the format for the problems in this paper.

This format is used in a variety of other large-scale

applications. Marques-Silva provides a review of practical

applications of Boolean satisfiability to a variety of

problems including artificial intelligence, model checking,

and electronic circuit design [13]. Berg et al provide

realistic benchmarks and applications of maximum

satisfiability to three problems in data analysis [14]. This

format lends itself to a wide range of research areas, and

now we will apply it to mining.

4

Ultimate Pit Problem

The Ultimate Pit Problem is to determine the final pit

contour such that the mine extracts all the economic ore

and leaves any unnecessary waste in place. This problem

ignores complexities such as the time value of money and

any mining or mill capacities. It is simplistic by today's

standards but is still useful in practice. It can be used to

help decide where to develop permanent infrastructure,

help limit the size of the scheduling problem, and to

roughly evaluate mine life and project economics. The

ultimate pit problem is schematically shown in Figure 3,

with the normal pit limits on the left, and the augmented

results considering a minimum mining width on the right.

Lerchs and Grossmann were the first authors to

describe the Ultimate Pit Problem in 1965 [1]. In their

paper, Lerchs and Grossmann developed a graph-based

algorithm to solve the Ultimate Pit Problem which

remained in use in the mining industry until within the last

decade or so. Lerchs and Grossmann indicated that the

problem could be expressed as a flow problem but

recommended their graph-based algorithm instead. In 1968

Johnson also showed that the Ultimate Pit Problem could

be expressed as a linear program, and that the dual of this

LP model is a flow problem [15].

This transformation of the Ultimate Pit Problem into a

flow problem proves extremely advantageous. Flow based

algorithms are many times faster than the graph based

Lerchs and Grossmann algorithm and yield precisely the

same results. Push-Relabel (Goldberg and Tarjan, 1988),

and Pseudoflow (Hochbaum 2001), are two sophisticated

flow-based algorithms that are commonly used [16, 17]. In

a recent study (Deutsch 2014), Pseudoflow was the fastest

algorithm considered for the ultimate pit problem [18]. In

this paper we provide yet another, slower, means of

expressing the Ultimate Pit Problem, but this time in terms

of maximum satisfiability.

The ultimate pit problem is encoded into maximum

satisfiability simply. For each block in the block model,

𝐵𝑀, add a variable 𝑋𝑖, this variable indicates if the block

is mined 𝑋𝑖 ← true or is left in place 𝑋𝑖 ← false. Also add

a length 1 clause for each block with the block's variable,

and a weight equal to the economic block value. Then for

each precedence constraint add a length 2 clause with

infinite weight of the form (¬𝑎 ∨ 𝑏) for each precedence

relationship where 𝑎 depends on 𝑏. The encoding is:

𝜙𝑈𝑃𝑃 = ⋀ (𝑋𝑖 , 𝐸𝐵𝑉𝑖)

𝑖∈𝐵𝑀

⋀ (¬𝑋𝑖 ∨ 𝑋𝑗)

𝑖,𝑗∈𝑷

This encoding is appealing because it is straight-

forward and simple and because it leads to precisely the

same results as the flow-based solution, but, it is not

practically very useful yet. We have just shown a slower,

and less efficient way of representing the Ultimate Pit

Problem. The value of this encoding comes from how

simply we can add a minimum mining width constraint.

The purpose of the minimum mining width constraint

is to avoid the greedy tendency of the calculated ultimate

pit to come to a sharp point at the bottom of the pit that

equipment could not even fit into. Mining engineers are

used to handling this constraint manually when designing

the pushbacks, but it can be difficult to optimally decide

between chopping of the blocks that do not satisfy the

minimum mining width or expanding the pit manually.

Figure 3. The Ultimate Pit Problem. Left: the ultimate pit as calculated with Pseudoflow. Right: the ultimate pit as calculated

with maximum satisfiability with a mining width of 12 blocks. Model is colored by economic block value.

5

We encode the minimum mining width by considering

a structuring element. This term, borrowed from

mathematical morphology, refers to a small shape or

collection of blocks which is generally very simple, such

as a 3 x 3 square or a small cross. This structuring element

is then scanned over the entire block model, and for each

location in the block model we add an additional variable

𝑚𝑤𝑙 to the encoding, and a series of infinite weight clauses

which enforce that this variable is true if and only if all the

blocks which belong to it are true. Then, for each block in

the model we add an infinite weight clause which says

either this block is not mined, or at least one of overlapping

mining width variables is true. That is, given a collection

of mining width sets 𝑺 augment the encoding as follows:

𝜙𝑈𝑃𝑃𝑀𝑊 = 𝜙𝑈𝑃𝑃 ∧

⋀(¬𝑚𝑤𝑙 ∨ 𝑋𝑖)

𝑖∈𝑺𝑙

∀𝑙 ∈ 𝑺

⋀ (¬𝑋𝑖 ∨ 𝑚𝑤𝑙 ∨ … ∨ 𝑚𝑤𝑛)

𝑖∈𝐵𝑀

The following example, Figure 4, shows a very small

example of the encoding with only 7 blocks (a … g). For

brevity the mining width constraint is only added to the

bottom bench of three blocks. A 2 block mining width is

considered, so there are 2 mw variables (𝑚𝑤1, 𝑚𝑤2). The

precedence constraints are shown with arrows, and the

economic block values are in the nodes.

The full encoding of this ultimate pit problem

considering a minimum mining width constraint into

maximum satisfiability is as follows:

𝜙𝑒𝑥 = (¬𝑎, 3) ∧ (¬𝑏, 2) ∧ (¬𝑐, 3) ∧ (¬𝑑, 3) ∧
(𝑒, 1) ∧ (𝑓, 6) ∧ (𝑔, 2) ∧

(¬𝑒 ∨ 𝑎) ∧ (¬𝑒 ∨ 𝑏) ∧
(¬𝑓 ∨ 𝑏) ∧ (¬𝑓 ∨ 𝑐) ∧

(¬𝑔 ∨ 𝑐) ∧ (¬𝑔 ∨ 𝑑) ∧

(¬𝑚𝑤1 ∨ 𝑒) ∧ (¬𝑚𝑤1 ∨ 𝑓) ∧

(¬𝑚𝑤1 ∨ 𝑓) ∧ (¬𝑚𝑤1 ∨ 𝑔) ∧

(¬𝑒 ∨ 𝑚𝑤1) ∧
(¬𝑓 ∨ 𝑚𝑤1 ∨ 𝑚𝑤2) ∧

(¬𝑔 ∨ 𝑚𝑤2)

Figure 4: Minimum example of the Ultimate Pit Problem

with a minimum mining width encoded in Maximum

Satisfiability.

Block Scheduling Problem

In the Block Scheduling Problem, we are not only

concerned with which blocks to mine, but also when to

mine them. This problem is shown schematically in Figure

5. Lerchs and Grossmann recommended a technique they

called parametric analysis whereby the volume of the pit

was successively reduced, by reducing the block values, to

achieve a sequence that they claimed would maximize the

integral of the cash flow [1]. Additional early work in this

area by Dagdelen and Johnson (1986), worked to maximize

net present value subject to production constraints by using

a Lagrangian relaxation of the problem [19]. This is a

heavily researched problem with many exact and

metaheuristic approaches; Newman (2010) provides an

overview [20].

In the Block Scheduling Problem, we consider a set of

variables 𝑋𝑖,𝑡 for each block 𝑖 ∈ 𝐵𝑀, these variables

indicate if the block is mined in time period 𝑡 ∈ 𝑇. We add

hard clauses to ensure that the block is mined in at most

one time period. The length 1 clauses representing the

block's value are modified to account for the time value of

money. Then we relax the precedence constraints to say

that a block satisfies precedence if the above block is mined

in either the same or any earlier period. For resource

constraints we add Pseudo Boolean (PB) constraints which

are of the form:

∑ 𝑤𝑖𝑙𝑖 ≤ 𝑘

Where 𝑤𝑖 is a positive integer weight (in this case

tonnage of the block), 𝑙𝑖 are the Boolean variables, and k is

a positive integer which is the upper limit. A lower limit

can be similarly encoded. This gives us the following Max

SAT formulation of the block scheduling problem.

6

Figure 5. Block Scheduling Problem. Left: Sequence not considering mining width Right: The sequence considering a

minimum mining width / pushback width of 12 blocks.

𝜙𝐵𝑆𝑃 = ⋀ (𝑋𝑖,𝑡 , 𝐷𝐸𝐵𝑉𝑖,𝑡)

𝑖∈𝐵𝑀

⋀ ⋀(¬𝑋𝑖,𝑡 ∨ 𝑋𝑗,1 ∨ … ∨ 𝑋𝑗,𝑡)

𝑡∈𝑇𝑖∈𝐵𝑀

⋀ ⋀ ⋀ (¬𝑋𝑖,𝑗 ∨ ¬𝑋𝑖,𝑘)

|𝑇|

𝑘=𝑗+1

|𝑇|−1

𝑗=1𝑖∈𝐵𝑀

∑ 𝑤𝑖𝑋𝑖,𝑡 ≤ 𝑅𝐶𝑡

𝑖∈𝐵𝑀

∀𝑡 ∈ 𝑇

Where 𝑅𝐶𝑡 is the maximum tonnage mined in a given

time period. This is a very simplistic formulation of the

block scheduling problem, with only precedence

constraints, and an overall mining constraint – but we could

consider several extensions. Some standard attributes of a

block scheduling problem, including blending, stockpiling,

and managing head grades, are not so easy to consider in a

pure maximum satisfiability model. We should do more

research to develop appropriate encodings.

Note that there are many techniques for encoding

pseudo Boolean constraints in SAT. If we say that all

blocks have a constant tonnage we can use cardinality

constraints of which there are several described in Frisch

(2010) [19]. If the tonnages are different on a block basis

we can use another technique such as those described in

Eén (2006), or the generalized totalizer encoding from

Joshi (2015) [22, 23]

Again, we are not content with the above encoding,

and should add the mining width constraint as in the

ultimate pit problem. Pourrahimian 2009 provide two

mixed integer linear programming formulations for the

block scheduling problem that contain considerations for a

minimum mining width [24]. In the first each block is

constrained to have a certain number of its neighbors

extracted in the same period, and in the second they

aggregate the blocks before the optimization. Neither of

these consider minimum mining width structuring

elements the way that we are doing here.

We can add the mining width constraint accounting for

the minimum mining width structuring element as

described above, however, we have a few options. We

could say that a mining width variable is true if the blocks

within the structuring element are mined in any period.

This effectively ensures that the final pit limits satisfy a

minimum mining width. We could also say that a block

only satisfies the mining width constraint if all the blocks

are mined in the same period. This ensures a minimum

pushback width as shown in Figure 5. This avoids a

common problem in block scheduling where algorithms

will greedily move the pit wall a very short distance.

Grade Control Polygon Problem

The last problem addressed is the problem of creating

optimal, and minable, polygons in open pit grade control.

Grade control in open pit mines is a large process with

many different aspects including sampling, estimating,

classifying and mining material. The Grade Control

Polygon Problem only covers the classification part of

grade control, in that we are given a block model which

represents the area of interest with geologic attributes

already sampled and estimated. We must then classify the

material so that we maximize the economic and ensure that

the resulting classification is practical and could be

extracted by reasonably sized equipment.

The Grade Control Polygon Problem has been

expressed in a variety of ways and solved with a variety of

algorithms including those based on meta heuristics such

as simulated annealing [25, 26], genetic algorithms [27], or

hierarchical techniques [28], but also exact techniques such

as branch and bound [29]. An overview of the problem is

shown in Figure 6.

7

Figure 6. The Grade Control Polygon Problem. Left: Input to the grade control polygon problem, economic values for each

classification for each block. Right: Output, each block assigned to the best classification such that a 3x3 mining width is

honored and economic value is maximized, reclassified blocks are colored darker.

In the Grade Control Polygon Problem we consider

Boolean variables 𝑋𝑖,𝑐 with one for each block 𝑖 ∈ 𝐵𝑀 and

each classification 𝑐 ∈ 𝐶. Again, we add hard clauses to

indicate that each block has at most a single classification,

but we also add a clause to enforce that each block has one

classification. In the Block Scheduling Problem it was

possible for the block to not be mined, but that is not an

option here. We add length 1 soft clauses to encode the

value of the different classifications.

We encode the mining width constraint for this

problem in the same way as for the previous problems. We

add a set of mining width variables, one for each mining

width structuring element location and for each

classification. A given mining width variable is

constrained, by hard clauses, to be true if an only if all the

blocks inside of it are sent to the same destination. Then for

every block we say that there must be at least one mining

width set variable that is true. This is summarized below.

𝜙𝐺𝐶𝑃𝑃 = ⋀ ⋀(𝑋𝑖,𝑐 , 𝐸𝐵𝑉𝑖,𝑐)

𝑐∈𝐶𝑖∈𝐵𝑀

⋀ (⋁ 𝑋𝑖,𝑐)

𝑐∈𝐶𝑖∈𝐵𝑀

⋀ ⋀ ⋀ (¬𝑋𝑖,𝑗 ∨ ¬𝑋𝑖,𝑘)

|𝐶|

𝑘=𝑗+1

|𝐶|−1

𝑗=1𝑖∈𝐵𝑀

⋀(¬𝑚𝑤𝑙,𝑐 ∨ 𝑋𝑖,𝑐)

𝑖∈𝑺𝑙

⋀ (¬𝑋𝑖,𝑐 ∨ 𝑚𝑤𝑙 ∨ … ∨ 𝑚𝑤𝑛)

𝑖∈𝐵𝑀

The above encoding presumes that there is at most

about 7 different classifications for each block, or else the

binomial clauses to ensure at most one classification per

block will become unwieldy. Again, this is a pseudo

Boolean constraint and could be encoded in several

different ways as discussed in the Block Scheduling

Problem.

Discussion

These encodings are fundamentally quite simple, with

reasonably few clauses of similar form, but as the input

grows the problem grows rapidly. Especially for the block

scheduling problem and the grade control polygon

problem, as the number of time periods, and number of

destinations grow the problem gets substantially harder.

This is vitally important because the Max-SAT problem is

NP-complete, and there are no known polynomial

algorithms available.

There are many different techniques for solving Max

SAT problems, and it is not immediately clear which of

these techniques is most suitable to our mining problems.

There are broadly two main classifications of Max SAT

solvers; incomplete and complete. A complete solver if

8

given enough time will give the single exact optimal result

along with a certificate of optimality. Incomplete solvers

do not guarantee that the optimal result is found but may

give higher quality results quicker or may handle larger

problems. There are then many different further classes

within these complete and incomplete solvers.

It is interesting to note that Max SAT problems can be

translated into a mixed integer linear program and solved

as such. That is, we have opportunities to use sophisticated

solvers and features of a mixed integer linear program if it

is advantageous.

The Pseudo Boolean constraints, that are used in the

Block Scheduling and Grade Control Polygon problems

are sometimes directly supported by solvers to further

exploit their form. Solvers which support this may do very

well on these specific problems. We have not yet

performed a full comparison of the many different solution

techniques. An initial review has found that many of the

complete solvers are not immediately applicable to full

problems. They are too slow, or the problems are too big.

This is an area for future research.

There is a lot of opportunity for reducing the problem

size through appropriate analysis or splitting the problem

up into smaller problems that are solved independently.

There are opportunities for using combined techniques

where heuristics that exploit the structure of the problem

are used to provide initial solutions, or to improve

intermediate solutions. There could also be better

encodings of the problems that have less variables or

clauses, however due to the great sophistication of modern

SAT solvers this may or may not lead to increased

performance, the encodings would have to be

experimentally validated.

We have examined the Grade Control Polygon

problem in detail and have used our encoding extensively

on real problems. A commercial implementation of this

encoding (with additional improvements) is available and

is currently in use at several different mines [29, 30]. The

encodings of the Ultimate Pit Problem and the Block

Scheduling Problem are still in the early research phase.

Conclusion

We have proposed alternate encodings to three

fundamental problems in open pit mine optimization using

maximum satisfiability. Maximum satisfiability has

proven useful in allowing us to consider more operational

constraints and create mine designs that are more realistic.

That is, with Maximum satisfiability we can explicitly

optimize with a mining width constraint. It is not clear yet

whether these encodings are scalable to full size mining

problems, or what sort of work needs to be done – we have

provided at least a base framework, and some avenues to

explore.

One of the advantages of maximum satisfiability in

general is that it is very useful outside of the mining

industry. Many other fields use these solvers and are

continuously working on them and improving them. Here

in the mining industry, we should try to take advantage of

this and apply these results to our problems and help us to

make better decisions, design better mines, and create more

value.

Currently, except for the Grade Control Polygon

problem, this introductory work is not suitable for

immediate application on full size realistic problems.

Additional research must be done to fully evaluate the

different solvers, the different options, and the different

optimizations that can be done to see if this work can have

real practical significance beyond toy problems.

Conflicts of Interest

On behalf of all authors, the corresponding author

states that there is no conflict of interest.

Required Statement

The final publication is available at https://link.

springer.com/article/10.1007/s42461-019-0062-x

References

1. Lerchs, H., & Grossmann, I. (1965). Optimum design

of open-pit mines. In Operations research (Vol. 12, p.

B59).

2. Gilbert, J. W. (1966). A mathematical model for the

optimal design of open pit mines (Doctoral

dissertation). University of Toronto.

3. Lipkewich, M. P., & Borgman, L. (1969). Two-and

three-dimensional pit design optimization techniques.

A decade of digital computing in the mineral industry,

505–523.

4. Chen, T. (1976). 3d pit design with variable wall slope

capabilities. Proc. of the 14th APCOM.

5. Khalokakaie, R., Dowd, P. A., & Fowell, R. J. (2000).

Lerchs–grossmann algorithm with variable slope

angles. Mining Technology, 109(2), 77–85.

9

6. Caccetta, L., & Giannini, L. (1988). Generation of

minimum search patterns in the optimum design of

open pit mines. AusIMM Bull. and Proc 293, 57-61.

7. Tarski, A. (1956). The concept of truth in formalized

languages. Logic, semantics, metamathematics, 2,

152–278.

8. Shannon, C. E. (1938). A symbolic analysis of relay

and switching circuits. Electrical Engineering, 57(12),

713–723.

9. Davis, M., & Putnam, H. (1958). Computational

methods in the propositional calculus, Rensselaer

Polytechnic Institute, 64.

10. Davis, M., Logemann, G., & Loveland, D. (1962). A

machine program for theorem-proving.

Communications of the ACM, 5(7), 394–397.

11. Franco, J., & Martin, J. (2009). A history of

satisfiability. Handbook of satisfiability, 185, 3–74.

12. Tseitin, G. (1968). On the complexity of derivation in

propositional calculus. Studies in constructive

mathematics and mathematical logic, 115–125.

13. Marques-Silva, J. (2008, May). Practical applications

of boolean satisfiability. In 2008 9th International

Workshop on Discrete Event Systems (pp. 74-80).

IEEE.

14. Berg, J., Hyttinen, A., & Järvisalo, M. (2015).

Applications of MaxSAT in data analysis. Pragmatics

of SAT.

15. Johnson, T. B. (1968). Optimum open pit mine

production scheduling (Tech. Rep.). California Univ

Berkeley Operations Research Center.

16. Goldberg, A. V., & Tarjan, R. E. (1988). A new

approach to the maximum-flow problem. Journal of

the ACM (JACM), 35(4), 921–940.

17. Hochbaum, D. S. (2001). A new-old algorithm for

minimum-cut and maximum-flow in closure graphs.

Networks, 37(4), 171–193.

18. Deutsch, M., Gonzalez, E., & Williams, M. (2015).

Using simulation to quantify uncertainty in ultimate-

pit limits and inform infrastructure placement. Mining

Engineering, 67(12).

19. Dagdelen, K., & Johnson, T. (1986). Optimum open

pit mine production scheduling by Lagrangian

parameterization. Proc. of the 19th APCOM, 127–142.

20. Newman, A. M., Rubio, E., Caro, R., Weintraub, A.,

& Eurek, K. (2010). A review of operations research

in mine planning. Interfaces, 40(3), 222–245.

21. Frisch, A. M., & Giannaros, P. A. (2010). Sat

encodings of the at-most-k constraint. some old, some

new, some fast, some slow. In Proc. of the tenth int.

workshop of constraint modelling and reformulation.

22. Eén, N., & Sörensson, N. (2006). Translating pseudo-

boolean constraints into sat. JSAT, 2, 1-26.

23. Joshi, S., Martins, R., & Manquinho, V. (2015).

Generalized totalizer encoding for pseudo-boolean

constraints. In International conference on principles

and practice of constraint programming, 200–209.

24. Pourrahimian, Y., Askari-Nasab, H., & Tannant, D.

(2009). Production scheduling with minimum mining

width constraints using mathematical programming.

25. Isaaks, I., E. Treloar, & Elenbaas, T. (2014). Optimum

dig lines for open pit grade control. In Proceedings of

ninth international mining geology conference, 425–

432. The Australasian Institute of Mining and

Metallurgy.

26. Neufeld, K. Norrena, C, & Deustch, C. (2005). Guide

to geostatistical grade control and dig limit

determination., 1, 63.

27. Ruiseco, J. R., Williams, J., & Kumral, M. (2016).

Optimizing ore–waste dig-limits as part of operational

mine planning through genetic algorithms. Natural

Resources Research, 25(4), 473–485.

28. Tabesh, M., & Askari-Nasab, H. (2013). Automatic

creation of mining polygons using hierarchical

clustering techniques. Journal of Mining Science,

49(3), 426–440.

29. Deutsch, M. (2017). A branch and bound algorithm for

open pit grade control polygon optimization. Proc. of

the 19th APCOM.

30. Deutsch, M., Kusuma, N., Allen, L., & Godoy M.

(2019). Implementing optimal grade control polygons

at Newmont’s mines. Presentation at the 2019 SME

Conference, Denver, CO

