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Abstract 

Solving the ultimate pit problem remains an important and relevant task in open pit mine planning as a subroutine in 

sophisticated decision processes, parametric analysis, quantifying the impact of geologic uncertainty, approaching 

more complicated problems such as production scheduling, or as a subproblem in decomposition. Ultimate pit models 

often contain dozens of millions of blocks and hundreds of millions of precedence constraints and they may need to 

be solved hundreds or even thousands of times. These requirements can quickly overwhelm existing ultimate pit 

solvers. This paper introduces MineFlow: an open source c++ library providing efficient and flexible precedence 

schemes and a stripped down pseudoflow-based solver. In a computational comparison with five modern commercial 

packages we show that MineFlow consistently computes identical results in a fraction of the time; with MineFlow a 

block model containing 16 million blocks is processed in nine seconds when the fastest commercial alternative takes 

two and a half minutes. These improvements are realized by using implicit precedence schemes and slightly modifying 

the conventional pseudoflow algorithm. Additionally, we present a compact notation for the pseudoflow algorithm to 

assist educators in presenting the latest in ultimate pit optimization. 

 

 

Article Highlights 

• A capable and computationally efficient open-source solver for the ultimate pit problem based on pseudoflow 

is introduced 

• Novel modifications to the pseudoflow method to improve computational performance are described 

• A compact notation for the pseudoflow algorithm is introduced to promote teaching the latest in ultimate pit 

optimization 
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1 Introduction 

Open pit mines are complicated to plan and execute in a manner that uses the earth's resources in a sustainable manner. 

Mining engineers, and other technologists in the mining industry, are required to call on a diverse toolkit from a wide 

variety of disciplines to make the best decisions on a day-to-day basis. Operations research has historically been an 

important discipline in this toolkit as it uses concrete, justifiable, techniques based on mathematical modeling, 

statistical analysis, and optimization. One of the most foundational problems for which operations research has been 

used in mining is the ultimate pit problem. 

The ultimate pit problem is, at first look, concerned with determining the final pit contour such that the subset of 

material providing the maximum profit is extracted, and all unnecessary waste is left in place – Figure 1. This problem 

has borne the brunt of legitimate criticism in recent years. The ultimate pit ignores many of the complexities and 

realities of mining including the time value of money, mine and mill capacities, stockpiling, selectivity, and more. It 

has a very narrow focus and the ultimate pit as identified at the beginning of a project will almost certainly not be the 

final extraction limits in part because certain realities cannot be captured in the initial model and because inputs will 

continue to change over time. 

Despite this, the narrow focus of the ultimate pit problem makes it useful as a subroutine in more complicated 

pursuits such as scheduling (Buelga Díaz et al 2021), sensitivity analysis, infrastructure placement (Deutsch et al 

2015), and the broader circular nature of long-range open pit mine design (Darling 2011). For example, the ultimate 

pit depends in part on operating costs, those operating costs depend on what equipment is used, and the best equipment 

to use depends on many factors including the total volume to be extracted, the production rate, and lifetime of the 

mine which is dependent on its ultimate size. Open pit planners then use iterative procedures throughout the design 

process, within which the ultimate pit problem remains relevant. 

 

 
Fig. 1 An ultimate pit calculated with MineFlow 

 

The straightforward nature of the ultimate pit problem allows for sophisticated decision processes to be built on 

top of it and carries with it a mathematical structure that enables efficient algorithms. Historically implementations of 

these algorithms have been locked within expensive commercial packages or restricted behind non-permissive 

software licenses. This software landscape serves to limit productivity and research output. This holds the mining 

industry back by limiting innovation and making creative applications of the ultimate pit problem difficult.  

This paper introduces MineFlow, an open-source software package for defining precedence graphs and solving 

the ultimate pit problem. MineFlow is provided by the Colorado School of Mines and Newmont Corporation under 

the permissive MIT license which ensures that it is free to use in both academic and commercial settings. The code is 

available at https://github.com/MineFlowCSM/MineFlow. It is open source to invite improvements and contributions 

from researchers and users. The underlying solver is a stripped-down reimplementation of the Pseudoflow algorithm 

(Hochbaum, 2008). However, our implementation has been designed to focus solely on the ultimate pit problem and 

places a heavy emphasis on speed and low memory use. MineFlow is suitable for block models with hundreds of 

millions of blocks and billions of implicit precedence constraints. 

In the next section we will give a thorough overview of the ultimate pit problem and revisit the required theory 

and necessary background. In Section 3 we describe the pseudoflow algorithm along with our modifications in detail 

and go through a small example which introduces our shorthand notation. We believe that this compact notation is 

approachable and will help educators to clearly communicate the principles behind the pseudoflow algorithm. Section 

4 describes our open-source implementation and compares it with available commercial implementations. 
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2 Background 

2.1 Block Precedence 

Conventional open pit mine design is simplified by dividing the operational area of interest into a regular 3D block 

model. Each block within the model contains numeric and categorical attributes which are estimated or simulated 

through geostatistical processes. These local attributes and other global parameters are then used to calculate an 

economic block value for each block which roughly indicates the profit, often negative, if that block were mined. This 

is not a simple calculation and there are many considerations, for our purposes we will consider the appropriate 

discretization and valuation of the deposit as known inputs. 

The remaining parameter of interest is the precedence constraints which dictate the shape of the ultimate pit. Unlike 

underground mines, which use a variety of techniques to support the material above the deposit, open pit mines 

proceed downwards removing successive layers of material in a roughly cone shape. The slope of the cone is based 

on the strength of the material being mined, its geotechnical properties, and other structural geologic factors. This 

slope will generally vary by location and direction throughout the mining area. 

 

 
 

Fig. 2 Left: The ‘One-five’ precedence pattern extended 30 blocks vertically. Right: the 29 block min search 

precedence pattern extended 30 blocks vertically 

 

In their seminal 1965 paper, Lerchs and Grossmann proposed the ‘One-five’ precedence pattern where each block 

is connected to the five blocks immediately above it in a cross pattern. This scheme is locally precise but globally 

inaccurate as seen on the left in Figure 2. Better precedence schemes are described in Caccetta and Giannini (1988) 

where they introduce a technique for generating efficient ‘minimum search patterns’ wherein the pit slopes can vary 

by direction and the pattern consists of a bare minimum of precedence constraints. The 45-degree minimum search 

pattern for 9 benches is shown on the right in Figure 2, and when this pattern is extended vertically it closely resembles 

a cone. 

Further precedence schemes are described in Chen (1976), Khalokakaie and Dowd (2000), and Gilani and 

Sattarvand (2015). This is a common topic in the literature but again we sidestep much of this discussion and take the 

precedence constraints as given inputs. 

 

2.2 Ultimate Pit Problem 

The ultimate pit problem is naturally formulated as a linear programming problem. We use a single variable 𝑋𝑏 ∈ 𝐵 

which represents the proportion of each block that is mined where 𝐵 is the set of all blocks. Our single parameter, 

𝑣𝑏 ∈ 𝐵, is the economic block value described above. Our objective is to maximize the product of 𝑣𝑏 and 𝑋𝑏; our final 

mined value. The first set of constraints are the precedence constraints. These define for each block, 𝑏, what other 

blocks, �̂� ∈ 𝐵�̂� , must be mined before 𝑏. Note that the set of target blocks 𝐵�̂�  varies for each base block. The final set 

of constraints ensure the proportion of each block mined is between zero and one. It is not necessary to restrict the 

values of 𝑋𝑏 to be integer, they will only assume integer values due to the structure of the model; a property called 

total unimodularity. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑣𝑏𝑋𝑏

𝑏 ∈𝐵

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋𝑏 − 𝑋�̂� ≤ 0 ∀ 𝑏 ∈ 𝐵, �̂� ∈ 𝐵�̂�

 0 ≤ 𝑋𝑏 ≤ 1 ∀ 𝑏 ∈ 𝐵
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This formulation is useful for describing the ultimate pit problem, however in 1965 Lerchs and Grossmann 

originally described the problem as a network problem and not with linear programming. Lerchs and Grossmann 

developed an algorithm for solving the ultimate pit problem which iteratively introduced necessary precedence 

constraints, and this was the algorithm of choice for many years after being popularized by a commercial 

implementation from Whittle in 1985. 

There have been many different techniques developed to solve the ultimate pit problem. The floating cone 

algorithm from Pana (1965) is a heuristic method that does not guarantee an optimal solution but still finds use. 

Korobov (1974) improved on some of the floating cone algorithm’s shortcomings however it also does not guarantee 

the optimal solution. Zhao (1992) developed a variant of the Lerchs Grossmann algorithm that guaranteed optimal 

results and was found to be faster, however Zhao’s method was not widely adopted in industry. Mwangi (2020) 

presents a review of several approaches to the ultimate pit problem. 

Johnson (1968) showed in detail how to express the ultimate pit problem as a network flow problem. By taking 

the dual of the above linear programming formulation, and performing some appropriate manipulations, an efficient 

construction which allows the ultimate pit problem to be solved with well-known max flow/min cut algorithms is 

revealed. Solving the ultimate pit problem as a network flow problem is advantageous because network flow 

approaches have benefitted from decades of dedicated research. Ford and Fulkerson (1962) developed much of the 

initial theory surrounding network flow models and provided an initial algorithm for solving them. In recent years the 

Push-Relabel algorithm from Goldberg and Tarjan (1988) and the Pseudoflow algorithm from Hochbaum (2001) are 

preferred because they are faster. These modern network flow algorithms compute precisely the same results as the 

venerable Lerchs and Grossmann algorithm but do not take near as long. 

 

2.3 Network Terminology 

A network, or graph, is a mathematical structure which models pairwise relationships between objects. Networks are 

used to represent things which are both abstract and concrete. Many problems become simpler when thought of 

through the lens of networks because turning a real world problem into a network requires one to think cogently about 

which of the components of the problem can be combined and represented as nodes and then how best to model the 

relationships between those components with directed or undirected arcs (Ahuja et al. 1988). 

A directed arc between two nodes indicates that the arc has a specific orientation. The beginning and ending points 

of a directed arc are called the tail and head respectively. An undirected arc between two nodes does not have an order 

and only indicates that a relationship exists between the nodes. 

A sequence of arcs traversed in any direction between two different nodes is a path. Paths are defined such that 

they only go through nodes and arcs at most once. If a network is constructed such that any two nodes are connected 

by exactly one path it is called a tree, an example is on the left in Figure 3. Often trees have a special node designated 

as the root from which there could be many sub trees or branches. 

In the ultimate pit problem blocks are represented as nodes and precedence constraints as directed arcs. This is a 

special kind of network called a directed acyclic graph. Acyclic means that the network does not contain any directed 

cycles. A closure of a directed network is a set of nodes such that there are no arcs with their tails inside the closure 

and their heads outside. In the ultimate pit problem, all closures of the network are valid pits because the restriction 

on directed arcs ensures there are no precedence violations. An example closure is shown on the right in Figure 3. The 

ultimate pit, therefore, is the smallest maximum valued closure of the precedence graph.  

 
Fig. 3 Left: A network which is a tree with associated terminology. Right: a network which is a directed acyclic graph 
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2.4 Network Flows and Cuts 

Networks are used to model many different real-world problems, one of special interest to us are network flow 

problems. In a network flow each arc has a maximum allowed capacity and an assigned flow. Two special nodes are 

identified as the source, denoted with an 𝑆, and the sink with a 𝑇. Flow originates at the source node and terminates 

at the sink node. Usually, every other node must satisfy a flow-balance constraint which requires that the amount of 

flow into the node be equal to the amount leaving. Network models can be used to model fluids in pipes, power in an 

electrical grid, traffic on roads, and other similar things (Ahuja et al. 1988). A small example network flow model is 

shown in Figure 4. Flow is only permitted along the directed arcs, up to the capacity of the arc, from their tail to their 

head. 

In Figure 4 the current flow from the source to the sink is four units, however it is possible to route additional flow 

through this network. The bolded arcs through the middle of the network can carry one additional unit of flow. And 

the path along the top could take an additional two units. If both paths were saturated the flow for this network would 

be seven, which is the maximum flow.  

 
Fig. 4 An example network flow model. Source ‘S’ and sink ‘T’ nodes are labeled. Numbers on arcs indicate ‘flow’ / 

‘capacity’. The bolded arcs show a possible augmenting path 

 

In a network there are many ways to cut the network into two pieces. If the partitions are organized such that one 

side contains the source and the other side contains the sink then these two sets are called an s-t cut. In an arbitrary 

cut the arcs that cross from one partition to the other are said to be a part of the cut-set. However, in s-t cuts only arcs 

going from the source side to the sink side are included. 

 

 
Fig. 5 The four different possible s-t cuts for the network in Figure 4. Numbers on arcs are the arc’s capacity. The cut-

set arcs are bolded and the total cut capacity is shown below each cut 

 

For the small network in Figure 4 there are four different possible s-t cuts as shown in Figure 5. Note that the cut-

set corresponding to cut 4 only consists of two arcs despite appearing to go through three. This is because the middle 

arc, from 𝑏 to 𝑎, goes from the sink side to the source side. 

The capacity of an s-t cut is the sum of the arc's capacities in its cut-set. The capacity for each possible cut in 

Figure 5 is given in Table 1 below. 

 

s-t cut 𝑋 �̅� cut-set Capacity 

1 {𝑆} {𝑎, 𝑏, 𝑇} {(𝑆, 𝑎), (𝑆, 𝑏)} 9 

2 {𝑆, 𝑎, 𝑏} {𝑇} {(𝑎, 𝑇), (𝑏, 𝑇)} 8 

3 {𝑆, 𝑏} {𝑎, 𝑇} {(𝑆, 𝑎), (𝑏, 𝑇)} 7 

4 {𝑆, 𝑎} {𝑏, 𝑇} {(𝑆, 𝑏), (𝑎, 𝑇)} 11 

Table 1 The source set, sink set, cut-set and capacity of the four possible cuts for the graph in Figure 4 
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It so happens that the maximum possible flow through a network is equal to the capacity of the minimum cut – 

this is formalized in the Max-Flow Min-Cut theorem. Intuitively, the arcs in the cut-set of the minimum cut correspond 

to the ‘bottle-neck’ of the network flow model. There is no way to fit more flow through the cut-set without increasing 

its capacity, and if there was some other path around the bottleneck than it would not be a valid s-t cut. 

Most formal proofs of this theorem confirm the above intuition by showing that if the max flow did not equal the 

minimum cut there would be a contradiction. A very early discussion of this theorem appears in Ford and Fulkerson 

(1962). 

 

2.5 Source Sink Form 

Johnson (1968) showed that it is possible to formulate the ultimate pit problem as a max flow network problem where 

obtaining the max flow / minimum cut defines the ultimate pit. In this construction each node represents a single block 

of the original block model. Each node is connected by an arc from the source to the node if it has a positive economic 

block value, and from the node to the sink if negative. The capacity for these arcs is the absolute value of the block's 

economic value. Blocks with zero economic value are not connected to the source or the sink. Finally, for each 

precedence constraint there is an arc between the lower and higher block with infinite capacity. 

 
Fig. 6 Left: An example 2D block model. Right: The associated network flow problem rotated 90° with the maximum 

flow and minimum cut. Numbers on arcs are flow / capacity 

 

If this special network is solved for the max flow and minimum cut, then the blocks on the source side of the 

minimum cut correspond precisely to the ultimate pit limits as shown on the right in Figure 6. The capacity of the 

minimum cut is 9, which is equal to the maximum flow through the network. The difference between the sum of the 

capacities of the source adjacent arcs and the maximum flow is the ultimate pit value. 

 

3 The Pseudoflow Algorithm 

3.1 Preliminaries 

In this section we describe the pseudoflow algorithm in a manner that is informative for professionals in the mining 

industry and therefore we will take certain theoretical liberties and specialize the algorithm so that it works only on 

inputs as described in Section 2.5. The generic pseudoflow algorithm must contend with additional complexities and 

is required to compute the final flow values on arcs; for those details the reader may review Hochbaum (2008). In 

solving for the ultimate pit, the final flow values are of no real interest other than to define the minimum cut. In this 

minor variation of the generic pseudoflow algorithm we will concern ourselves only with computing the ultimate pit 

as quickly as possible.  

The pseudoflow algorithm is very similar to the Lerchs and Grossmann algorithm, as explained in Hochbaum 

(2001). Both algorithms operate iteratively by selecting a violated precedence constraint, enforcing it, and then 

adjusting necessary information for the next iteration. Where the pseudoflow algorithm deviates from the Lerchs and 

Grossmann algorithm is that it leverages the idea of flow instead of mass, it provides some machinery for selecting 

which precedence constraint to introduce, and maintains different structures which are easier to update efficiently. 

At each iteration the pseudoflow algorithm maintains a pseudoflow on the network and a special structure called 

a normalized tree. A pseudoflow is a relaxed flow where nodes are not required to satisfy the flow balance constraints 

described in Section 2.4. Nodes which have more inflow than outflow are said to have an excess and nodes with more 

outflow than inflow have a deficit. On the left in Figure 7 we introduce our notation for the pseudoflow. The numbers 

on the arcs are the current flow on the arc. If the arc does not have a number, then the flow is zero. The numbers inside 

the nodes are the current excesses (when positive) and deficits (when negative). If a number is omitted inside a node 

then it is zero and this means that the node satisfies the flow balance constraint. 
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Fig. 7 Left: The maintained pseudoflow on the flow network is notated with numbers on arcs for the flow, and numbers 

within nodes for excesses or deficits. Right: Thick arcs are a part of the normalized tree, and dotted arcs are not. Gray 

nodes are strong, white nodes are weak 

 

In our notation we do not include the capacity on any arc. This is because the capacities of all inner arcs, 

representing the precedence constraints, are infinity and the flows along the source and sink adjacent arcs are always 

at maximum capacity. 

The normalized tree is a tree in that there is exactly one unique path between any two nodes. It is also a rooted 

tree, meaning there is a special node, called the main root, such that every other node is a descendant of this main root. 

The normalized part of the name requires that only the nodes which are immediately adjacent to the main root can 

carry excesses or deficits. The tree remains a tree for the entire algorithm meaning that any changes to the tree require 

adding and dropping arcs from the tree simultaneously. 

In the classical description of the pseudoflow algorithm the source and sink nodes are combined into a single node 

which serves as the main root. However, for our purposes we will continue to draw the source and sink nodes as two 

distinct circles. This does make it such that the normalized tree will appear disconnected, but it makes showing both 

the initialization and the progression of the pseudoflow algorithm much easier. It is important to realize that the two 

source and sink circles are the same main root node - just seen in two different places. 

In addition to the main root we call each node that is immediately adjacent to the main root, roots. These secondary 

roots are classified as strong or weak based on if they have an excess or a deficit in the current pseudoflow respectively. 

Recall that for the tree to be normalized these secondary roots are the only nodes permitted to have excesses or deficits. 

We also say that any node which is a descendant of a strong root is strong, and similarly any node which is a descendant 

of a weak root is weak. 

Figure 7 introduces our notation for the normalized tree on the right. Line weight and style for arcs indicates 

membership in the normalized tree, secondary roots are in double circles, and the color of the node indicates strength. 

Gray nodes are the current strong nodes and white nodes are weak. 

These two pieces of notation are then superimposed on top of one another during the execution of the algorithm. 

There are a few important points to remember; the algorithm starts with a normalized tree and maintains that structure 

throughout, and the source and sink circles, labeled S and T, correspond to the same single main root node. When we 

discuss a path from a node back to the main root - it may go to either the source or the sink circle. 

 

3.2 Initialization 

The first step in the pseudoflow algorithm is to construct an initial normalized tree and an initial pseudoflow. It is 

possible to start the pseudoflow algorithm from any normalized tree with a valid pseudoflow, but the simplest starting 

point is to fully saturate all source and sink adjacent arcs, and include all source and sink adjacent arcs in the 

normalized tree as in Figure 8. 

 
Fig 8 The initial normalized tree, letters near nodes are node names and not a part of the notation 
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3.3 Algorithm Steps 

At each iteration of the pseudoflow algorithm an arc corresponding to a precedence constraint between a strong node 

and a weak node is selected and chosen as the merger arc. This merger arc is then introduced into the normalized tree 

and the arc between the strong root and main root is removed. The pseudoflow is then adjusted so that the tree remains 

normalized. This requires adjusting flows along the path from the strong root to the weak root. During this re-

normalization process there may be tree arcs which must be removed from the normalized tree which results in new 

branches. When there are no more precedence arcs between strong and weak nodes the algorithm stops, and all 

surviving strong nodes are the ultimate pit.  

 

In practice choosing which merger arc to use has a large impact on the performance of the algorithm. The 

pseudoflow algorithm uses a specific labeling scheme, described in Section 3.4, to guarantee good performance and 

avoid the sort of problems which plague the Lerchs and Grossmann algorithm. In this initial treatment of the 

pseudoflow algorithm we forego the use of labels and follow the sequence of merger arcs as indicated on the left in 

Figure 9 beginning with the precedence arc between nodes 𝑏 and 𝑒. This sequence is not a good sequence, but we use 

this sequence because it forces a split. 

Once the appropriate merger arc is chosen the algorithm identifies the corresponding strong root and the weak 

root. The strong root will, by definition, have some positive excess. Proceed as follows: 

 

1. Update the normalized tree by: 

a. removing the tree arc connected to the strong root, and 

b. adding the merger arc. 

2. Set a variable delta to be the excess of the strong root. 

3. ‘Push’ delta units of flow along the path from the strong root to the week root. Update the excesses / deficits 

/ strength as you go, and for each arc along the path: 

a. If the arc is directed in line with the flow: Increase the flow on the arc by delta. 

b. Else, try to decrease the flow on the arc by delta 

i. If the flow is strictly greater than delta: Set the flow to the current flow less delta 

ii. Else: Split flow on this arc (see below for details on splitting). 

 

The result of the first merge, between 𝑏 and 𝑒, is shown in the middle in Figure 9. For the second merge, between 

𝑏 and 𝑓, the strong root is 𝑒 and the weak root is 𝑓. The one unit of excess at 𝑒 is pushed along the path but does not 

exceed the deficit at 𝑓 so the entire branch is reclassified as weak, with a deficit of 3. 

 

 
Fig. 9 Left: The starting network, circled numbers on nodes indicate the order of merging arcs in this example. 

Middle: The result of the first merge between nodes b and e. Right: The result of the second merge between nodes b 

and f 

 

In Figure 10 the left and middle graphs show the result of the 3rd and 4th merges between 𝑎 and 𝑐, and 𝑎 and 𝑑.  

For the final merge between 𝑎 and 𝑒 we first update the tree and begin pushing 𝑑’s excess along the path towards the 

root. We reduce the flow between 𝑎 and 𝑑 by 3, increase the flow between 𝑎 and 𝑒 by 3 but now we have a problem. 

We would like to decrease the flow between 𝑏 and 𝑒 by 3 (our current value for delta), but this would lead to a negative 

flow which is not allowed. We can, however, reduce the flow to zero which will leave one unit of excess flow on 𝑒. 

Then we split on this arc as follows: 

 

1. Update delta to be the flow along the splitting arc, push the new delta units along the splitting arc which will 

reduce the split arc flow to zero and leave positive excess at the head node 
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2. Update the normalized tree by: 

a. removing the split arc, and 

b. adding the arc from the head node to the root 

3. Continue pushing the new delta units of flow along the remaining path to the weak root 

 

There may be several of these splitting operations in a single merge operation with a longer path between roots. 

 

 
Fig. 10 Left: The result of the third merge between nodes a and c Middle: The result of the fourth merge between 

nodes a and d. Right: The result of the final merge between nodes a and e, which requires splitting on the arc 

between b and e 

 

When there are no longer any precedence arcs between strong nodes and weak nodes the algorithm terminates. 

Any nodes which are still classified as strong at the end of the algorithm are then the ultimate pit, and the sum of 

their excesses is the ultimate pit value. 
 

3.4 Labeling 

Hochbaum introduces a labeling scheme to improve the performance of the pseudoflow algorithm. Intuitively, the 

labeling scheme forces the algorithm to carefully choose the merger arc at each iteration; avoiding certain sequences 

of merger arcs which would require more iterations than necessary. Specifically, the labeling scheme makes it such 

that the merger arc between nodes s and 𝑤 cannot be used again until the labels on each 𝑠 and 𝑤 have increased by at 

least one. 

All nodes are initially assigned a label of 1. When selecting a merger arc between a strong node 𝑠 and a weak node 

𝑤 the algorithm must select an arc such that the label of 𝑤 is as low as possible. Once the merger arc is selected, the 

label of all strong nodes is set to the maximum of its current label and 𝑙𝑤 + 1. These straightforward steps are enough 

to improve both the theoretical complexity of the pseudoflow algorithm and the practical performance. 

To illustrate the labeling procedure we adjust the value of block 𝑐 from -2 to -4 and modify the sequence of merging 

operations. Initially all blocks have a label of 1. However, as soon as the first merger arc between 𝑎 and 𝑒 is selected 

the labels of 𝑎 and 𝑏 are set to 2. The state of the network after the first three merges is shown on the right of Figure 

11. Blocks 𝑎, 𝑏, 𝑑 and 𝑒 all have a label of 2. At this point, due to the labeling scheme, the only allowed merger arc is 

between 𝑏 and 𝑓 – because 𝑓 has the lowest label. This merge will lead to the immediate termination of the algorithm 

as all blocks will become weak. If the labeling scheme were not used then we could choose the next merger arc to be 

between 𝑏 and 𝑒 (or 𝑏 and 𝑑). Either of these choices would require additional iterations. 

The labeling scheme presented here follows Hochbaum (2008) and specifies a relabeling operation to occur across 

all strong nodes after a merger arc is selected. This is not strictly necessary. Chandran and Hochbaum (2009) give 

advice on a modification to the labeling scheme that delays relabeling and improves the computational efficiency. Our 

implementation uses the more performant delayed labeling scheme which is also present in Hochbaum’s 

implementation. 
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Fig. 11 Left: The slightly modified example with a different sequence of merger arcs; as circled numbers on arcs. 

Right: The pseudoflow network after the first three merging operations. Labels are given as numbers next to the node 

names. a,b,d,e all have label 2. c andf have a label of 1. The only valid merging operation is b to f 

 

4 MineFlow 

4.1 Implementation Details 

Hochbaum’s implementation of the pseudoflow algorithm must contend with complexities which are not present in 

the ultimate pit problem. An entire class of potential splitting operations is precluded because all precedence arcs have 

infinite capacity, and all arcs are oriented from the source node towards the sink node. Additionally, we do not need 

to store the capacity on arcs nor the information necessary to recover the maximum flow after identifying the minimum 

cut. We take advantage of these differences in our implementation of the pseudoflow algorithm. 

MineFlow is a C++17 library which exposes a few straightforward classes for defining precedence graphs and 

computing ultimate pit limits with pseudoflow. The pseudoflow solver itself requires the integral block values, and a 

class which can be queried for the precedence constraints. It is important that we do not store the entire precedence 

graph in memory at any time: instead it is defined implicitly by using precedence patterns or lazy evaluation when 

possible. A typical large block model for the ultimate pit problem may have billions of precedence constraints, but 

only a very small fraction of them will be used when calculating the ultimate pit, we can save a great deal of time by 

not considering them unless strictly necessary. 

Economic block values must be provided to MineFlow as integer values. MineFlow can support arbitrary fixed 

sized integers. 256-bit integers have been tested with a minor decrease in performance. In practice economic block 

values can be scaled and rounded as necessary. 

To use the library with user specified data and precedence constraints it is necessary to define two classes with 

four virtual methods. A class inheriting from IBlockValues must be defined with two methods: NumBlocks and 

BlockValue which return the number of distinct blocks and their integral economic block values respectively when 

called. Additionally, a class inheriting from IPrecedenceConstraints must be defined which implements 

NumBlocks and Antecedents. The Antecedents function must return an iterator for each block that specifies 

which blocks must be mined first. There are examples of both of these classes included in the repository. 

In addition to the C++17 library, MineFlow includes a standalone executable which operates on flat text files. This 

executable is naturally much less flexible than the library but covers functionality for large regular block models and 

smaller explicit datasets. Both the library and the executable are released completely open source with no dependencies 

on third party libraries. This makes MineFlow a useful library for both academic and commercial applications. 

The executable has a straightforward command line interface to define common types of precedence constraints, 

and a basic parameter file to specify minimum search precedence patterns that allow precedence patterns to be defined 

with a custom block size and pit slopes that vary by direction. The executable also supports solving custom problems 

with each block’s value and precedence constraints defined in two files. Complete up-to-date documentation of the 

executable and library may be found alongside the solver in the main repository. 

 

4.2 Algorithm Comparison 

To verify that our implementation is correct and computationally efficient we collected 5 block models and imported 

them into several different commercial packages. We also transformed the problem to the pure max flow format to 

compare with Hochbaum’s original implementation. In all cases MineFlow computed the ultimate pits in less time 

than the other methods.  

For each package and each problem 5 runs were completed. The times presented Table 2 are given as the average 

of the middle 3 times, excluding the fastest and the slowest. All computations were completed on a Windows 10 

machine with a 3.70GHz Intel Xeon XPU E3-1245 v6 processor and 32.0 GB of RAM. The times were measured as 
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the complete time as reported by the package. This includes the time to read the input and write the output which can 

vary between packages. 

 
Dataset Solution time (sec), average middle 3 of 5 runs 

Name Blocks 

(Mined / 
Total)* 

Precedence* Package 

A 

Package 

B 

Package 

C 

Package 

D 

Package 

E 

Hochbaum’s 
pseudo_fifo 

MineFlow 

Bauxite** 74,412 / 

374,400 

5,349,104 25 22 4 9 9 3 0 

Copper 
Case Study 

357,304 / 
1,827,500 

28,321,632 179 99 14 85 43 15 2 

Copper 

Pipe 

198,078 / 

2,754,000 

43,877,152 399 183 64 290 109 24 3 

McLaughlin 345,936 / 
2,817,920 

44,495,400 243 168 37 34 52 24 3 

Gold Vein 602,150 / 

16,244,739 

264,007,172 721 764 169 752 556 81** 9 

Table 2 The solution times obtained when solving for the ultimate pit for the 5 different datasets. Times are given in 

seconds as the average middle 3 of 5 runs. 

* The precise number of mined blocks and the total pit value varies by less than 1% between packages due to different 

implementations of precedence constraints. 

** This Ultimate Pit is shown in Figure 1. 

*** This process ran out of available memory during the initialization step, an alternate computer with more available 

RAM was used to obtain this time. 

 

 The commercial packages are anonymized to respect the wishes of some of the software vendors. All five packages 

use a network flow based implementation however the precise details are not published or publicly available. One 

package uses the Push-Relabel algorithm and the other four use some variant of Pseudoflow.  

Each commercial package computed near identical results with the only changes being due to minor departures in 

how each package handles precedence constraints. MineFlow and pseudo_fifo computed identical results for all 

datasets as pseudo_fifo is a general utility with no means of generating precedence constraints by itself; MineFlow 

was used to create the necessary input files. Notably package C also computed identical results to MineFlow for all 

datasets. Departures due to precedence constraints were less than 1% in both overall pit value and the number of 

blocks mined. 

 

5 Conclusions 

The ultimate pit problem remains a relevant subproblem in modern open pit mine planning. Circular analysis, 

scheduling, uncertainty management, and other processes rely on computationally efficient and available ultimate pit 

solvers. Additionally, the Bienstock Zuckerberg algorithm, Bienstock & Zuckerberg (2009), uses the ultimate pit 

problem as a subroutine which is repeatedly solved to solve the precedence constrained production scheduling 

problem. Certain open pit mine planning problems that can be formulated as the ultimate pit problem with side 

constraints can be approached with Lagrangian relaxation and repeated applications of MineFlow. . It is common to 

solve ultimate pit problems thousands of times in these approaches and MineFlow makes that much faster. 

Commercial packages have adopted the pseudoflow algorithm, or similar max flow algorithms, for solving the 

ultimate pit problem, however implementations vary in terms of availability, flexibility, and computational efficiency. 

Our own need for MineFlow arose when approaching large open pit mine planning problems that used the ultimate 

pit problem as a subroutine. In developing MineFlow we found room for optimizations and modifications which 

substantially improve the practical performance of the algorithm. Implicit, or lazy, precedence constraints, precluding 

impossible splitting operations, and eschewing the flow recovery step and associated bookkeeping have led to a 

computationally efficient ultimate pit solver which outperforms current commercial implementations. 

Additionally, we developed a compact notation for the pseudoflow algorithm with the aim of allowing future 

generations of mining engineers and technologists to learn network flow techniques which are the current best practice 

in ultimate pit optimization. 
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