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ABSTRACT

Open-pit mines must be designed to develop the Earth’s natural resources in the most

responsible, sustainable, and economic way. Traditional mine planning optimization methods do

not consider operational constraints; such as minimum mining width or minimum pushback width

constraints, and often do not generate realistic, actionable designs. This dissertation develops

techniques to incorporate operational constraints into open-pit mine planning which allows for

engineers to more accurately convert mineral resources into mineral reserves and better evaluate

the economic viability of open-pit mining projects. A major practical challenge is that the

resulting mathematical models are very large, with potentially hundreds of millions of variables

and constraints. Addressing this challenge and delivering tools which are usable on real-world 3D

datasets requires a theoretically motivated and computationally grounded approach.

The first contribution of this dissertation is an efficient implementation of the pseudoflow

algorithm for the well known ultimate pit problem. Modest theoretical improvements and

practical computational improvements combine to create a fast and efficient open source ultimate

pit optimizer, called “MineFlow,” which is more performant than all evaluated commercial

alternatives. A model with sixteen million blocks which takes over three minutes to solve with a

commercial ultimate pit optimizer is solved in nine seconds with this implementation.

The second contribution is a formulation and methodology for the ultimate pit problem with

minimum mining width constraints. These operational constraints restrict the shape of the

ultimate pit in order to provide suitably large operating areas which can accommodate the large

machinery used in open-pit mining. This problem is shown to be NP-complete and several

optimization approaches are developed in order to compute high quality results for large block

models in a reasonable amount of time. The two most effective approaches use Lagrangian

relaxation and the Bienstock-Zuckerberg algorithm which are modified for this problem.

Moreover, the formulation is extended to open pit direct block scheduling problems with

operational constraints and solved using a newly developed method based on the

Bienstock-Zuckerberg algorithm. This approach is applicable to large, realistic, open-pit planning

problems that span multiple time periods and multiple possible destinations for each block.
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and Johnson 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 3.9 Left: The modified example with a different sequence of merges as numbers
on arcs. Right: The network after three merges. Labels are given as numbers
next to the node names. Figure adapted with permission from Deutsch,
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CHAPTER 1

INTRODUCTION

1.1 Problem Setting and Background

Our society is built on natural resources, many of which are extracted from the Earth via large

scale mining operations. It is of the utmost importance that these limited resources are developed

in a responsible and sustainable way such that future generations will be able to enjoy a quality of

life that is the same, or better, than our own. The mining companies which explore for, plan, and

ultimately develop these natural mineral deposits require suitable mathematical tools and

techniques in order to make the best decisions possible. Better, and more informed, decisions in

the planning process will lead to better plans that yield an improved return on investment and

also provide more benefit for local communities and accommodate our growing global needs.

In recent decades the global trends in mining have been towards mining larger and lower grade

deposits. The demand for metal is increasing and improvements in all aspects of the mining and

mineral processing chain have made these previously uneconomic deposits viable. Underground

mining, especially through large scale bulk mining methods such as block caving, are increasingly

being chosen for green and brownfield projects alike. However, in many situations surface mining

is still preferred due to lower capital and operating costs, among other considerations.

The field of operations research is a vital part of mine planning. The techniques provided by

operations research allow practitioners to form mathematical models of the complex engineering

problems that they face and analyze them in order to gain necessary insight. The solutions

provided by operations research guides mining engineers in navigating the complex operational,

geological, financial, environmental, and social challenges in mining. In this dissertation these

tools are developed further in order to provide additional insight, tackle previously

under-represented operational constraints, and provide necessary improvements in the field of

long range open-pit mine planning which are applicable to operating and future surface mines.

A mathematical model is only useful in so far as it represents the real underlying decision

problem, and how well the resulting analysis can be used. A poor model can often do more harm

than good, and unrealistic or inappropriate assumptions in the modeling process can mislead
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engineers and practitioners, sometimes drastically. For this work, the emphasis is on more

accurately representing underlying decision problems and more closely matching the mathematical

models with the realities of open-pit mining. Specifically operational constraints, or constraints

that must be imposed on the plan because large equipment is used, are considered herein.

The unfortunate reality, however, is that increased accuracy generally leads to increased

complexity and can limit the applicability to smaller and less useful models because the

computational process of solving for the correct answer takes an inordinate amount of time.

Therefore, special emphasis has been placed on developing techniques that are computationally

efficient and are directly usable with full sized, realistic, 3D datasets from real mining operations.

1.2 Goals and Outline

The goal of this dissertation is to develop high quality and computationally efficient models

which addresses the most fundamental operational constraints in open-pit long range mine

planning. The models must be correct, flexible, and applicable to a wide range of real world

deposits. To achieve this goal the dissertation is structured as follows.

Chapter 2 reviews relevant literature and establishes the necessary prerequisites in the fields of

mine planning and operations research. The focus is on long range mine planning problems,

specifically the ultimate pit limit problem and the block scheduling problem. Current approaches

to incorporating operational constraints are discussed.

Chapter 3 documents a series of improvements to the foundational ultimate pit problem. The

general network flow based pseudoflow algorithm is dissected and reimagined solely for the

ultimate pit problem. Small optimizations are presented with a dramatic impact on the

computational performance of the algorithm. This provides the ability to solve hundreds or even

thousands of ultimate pit problems extremely rapidly. A novel notation is developed for the

pseudoflow algorithm with moderate pedagogical value, and a novel means by which the accuracy

of a given precedence pattern can be computed is presented. Finally, Chapter 3, concludes with a

computational comparison between this new, and permissive open-source, implementation of the

pseudoflow algorithm and long standing commercial alternatives.

Chapter 4 extends the ultimate pit problem to consider minimum mining width constraints

which are conventionally addressed late in the mine design process by hand. Incorporating these
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operational constraints directly into the ultimate pit problem and using proper optimization

methods ensures that the pit designs accurately reflect how they will be developed and eventually

produced. This allows for more accurate reserve estimates and better decision making

opportunities. Several different solvers are developed varying in complexity from simple geometric

heuristics to iterative optimization procedures based on the tenets of duality theory. Another

computational comparison is completed to evaluate the proposed solvers by their solution quality

and overall speed. Run time is of the utmost importance in real world applications especially

when evaluating uncertainty and performing sensitivity analysis which require solving multiple

problems in sequence.

Chapter 5 describes various methods for modeling operational constraints in the more

complicated area of direct block scheduling. Where the ultimate pit problem is concerned with

what material should be mined, the block scheduling problem additionally considers when to mine

different areas of the deposit as well as to what destination the mined material should be sent.

This problem’s mathematical model is a large scale mixed integer linear program that is very

difficult to solve directly. This chapter describes a new algorithm to solve this problem iteratively

using a modified Bienstock Zuckerberg decomposition algorithm.

Finally, Chapter 6 contains the final conclusions and documents avenues for future research.

Many of the limitations associated with this work are also discussed.

The appendices contain two more specialized developments which are better suited to

appearing after the main text. Appendix A presents a computational complexity proof associated

with the main problem considered in Chapter 4. The ultimate pit problem with minimum mining

width constraints is shown to belong to the class of NP-complete problems for which no known

polynomial time algorithm currently exists. This is shown by reducing the 3-SAT problem to a

simplified variant of the ultimate pit problem with minimum mining width constraints.

Appendix B contains a novel dynamic programming algorithm for selecting a subset of pits to

serve as pushbacks following parametric analysis in long range mine planning. This algorithm is

motivated by the fast ultimate pit optimization approach developed in Chapter 3 which allows for

practitioners to compute many more nested pits than typical. Selecting an evenly spaced set of

pushbacks from these hundreds of nested pits automatically is possible with this new algorithm

which removes a long standing inconvenience faced by mine planners.
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CHAPTER 2

OPEN-PIT MINE PLANNING: REVIEW AND ALGORITHMS

Mining is responsible for providing many of the raw materials necessary to build and maintain

our civilization. The design, planning, and scheduling of mining operations is critically important

to maintaining our way of life and providing the building blocks of our society. The mine design

process helps determine the economic viability of mining projects around the globe and provides

plans which guide the operation through development, production, and reclamation. This is an

extremely difficult and complex problem because it is both very large with many different

concerns including geological, financial, environmental, and social; and contains many different

interdependent systems and interactions.

To contend with this complexity mining engineers and technologists in the mining industry

use a wide range of techniques from operations research and other fields in order to make the best

decisions possible. The concepts and prior work described in this chapter provide the necessary

background and the basis for the new methods introduced in the subsequent chapters.

Section 2.1 reviews the broader field of open-pit mine planning including its main objectives,

modeling, and the modern approach to open-pit mine planning. The circular nature of mine

planning is introduced and several of the subproblems are discussed. The subproblems most

relevant to this dissertation are then described in the following sections.

Section 2.2 discusses the foundational ultimate pit problem which helped launch the field of

computational open-pit mine planning. The ultimate pit problem has a well defined mathematical

structure which has afforded multiple different exact solution techniques and heuristics which are

described herein. The max-flow / min-cut approach to identifying the ultimate pit limit is

described in detail as it is used extensively when considering operational constraints and is

further developed in Chapter 3.

Where the ultimate pit problem is concerned only with what is mined throughout the life of

the mine, the block scheduling problem concerns itself with when to mine it and how to process

the mined material. Section 2.3 discusses the block scheduling problem where the ultimate pit is

divided into a set of smaller nested pits which are extracted in sequence. These nested pits are
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also referred to as pushbacks, phases, or cutbacks and are chosen to maximize the net present

value (NPV) of the mine while adhering to additional constraints such as minimum and

maximum mill grades, blending, stockpiling and more.

Section 2.4 presents prior work relating to extending the ultimate pit problem and the block

scheduling problem to consider operational constraints. Special attention is given to extensions

which consider minimum mining width constraints as many are implemented and considered in

Chapter 4.

Section 2.5 presents the necessary background around mathematical programming and

optimization. The Lagrangian relaxation approach to dualizing certain constraints is given special

attention as it is used later in the dissertation to accommodate operational constraints.

2.1 Open-Pit Mine Planning

Open-pit mines are characterized by mining deposits which are near-surface using horizontal

benches and dumping waste material outside of the pit limits. Deeper deposits are generally more

well suited to underground methods which can leave much of the waste undisturbed by using a

variety of methods to support overlying rock and extract material through shafts or declines.

Underground mines generally have higher development costs, longer start-up times, and are less

preferable to open-pit mines all else being equal [1]. Quarries are distinct from open-pit mining in

that a quarry extracts aggregate material or dimensioned stone instead of selectively extracting

ore, and strip-mines depart from open-pit mining by operating with larger, shallower footprints

and depositing the waste in previously mined panels [2].

Production rates in excess of 100 MT/year are achievable with open-pit mines, where even the

largest block caving underground mines rarely exceed 30 MT/year [3]. This high production is

possible in part by using larger equipment and many concurrent working areas which are more

difficult in confined underground workings which also have to contend with complex ventilation

requirements. Open-pit mines are well suited for extracting industrial metals including iron ore

and copper, along with precious metals such as gold so long as the ore bodies are near enough to

the surface to maintain an operable stripping ratio. The high production rates and lower mining

costs allows even low-grade porphyry copper deposits to be economical with open-pit techniques.
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An operating open-pit mine has several main features which are in place to accommodate the

large equipment and mining operations. The pits themselves are large holes in the ground which

are divided into many horizontal benches. These benches typically range in height from 10 to 20

meters which depends on geotechnical considerations, the equipment being used, and the deposit

itself. Some benches, which are currently being excavated, are called working benches and must

be of a sufficient size to host the necessary equipment. The pit also maintains at least one large

haul road and several smaller access roads. These roads provide necessary access to the working

benches and a means by which material is transported to the relevant processing facilities or

waste dumps using haul trucks.

Open-pit mines generally extract much more overburden and waste than ore which has to be

put somewhere. It is important to handle this waste material as little as possible and great care is

generally taken to avoid having to re-handle it. The waste, by definition, is not processed for

revenue but may require processing to remove deleterious elements or avoid issues associated with

acid rock drainage or other concerns. Waste is typically stored in large waste dumps which, at

least in the early stages of an open-pit mine, are located outside of the pit limits.

Different ores have different processing requirements that may involve many unit operations

including comminution, classification, and concentration. The facilities for these operations may

be on the mine site, or accessed by transporting the raw bulk material or intermediate products

by rail, large conveyor systems, cargo ships, or other bulk transportation methods. If the facilities

are on site their by-products may also have to be stored on site or processed to avoid untenable

environmental impacts. Many mineral processing plants generate tailings; small particles which

have been separated from the elements of interest and are mixed with water and other processing

reagents. These tailings are stored within large tailings storage facilities on site which have to be

carefully engineered and located, as moving them later is essentially impossible.

Historically open-pit mine planning was completed by hand, with hand drawn sections and

maps. This approach relied on trial and error, tedious hand calculations, and manual smoothing

between cross sections [4]. Many decisions during this era of mine planning were based on visual

criteria that emphasized operational concerns or rules of thumb. Alternative mine designs were

expensive and time consuming to consider so only a very small number of trials or alternatives

could be generated.
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Following the development of computers and the acceptance of computerized methods for

mine planning many of the traditional limitations were lifted. Computers are capable of

evaluating many different designs and solving different subproblems that are infeasible to solve by

hand. In general, operations research has proven to be one of the most important tools for the

modern open-pit mine planning engineer and a great deal of research has been completed in this

area [5]. The following sections describe much of the modern, computerized, approach to open-pit

mine planning including its objectives, the mine planning process, mathematical modeling, and

the most relevant subproblems.

2.1.1 Objectives of Open-Pit Mining Operations

The objective of an open-pit mining operation is to extract and process relevant material in

the most cost effective and economic way possible. Generally the most commonly accepted

objective is to maximize the net present value (NPV) of the project which accounts for the time

value of money and rewards generating profit as early as possible typically by reducing early

capital costs and mining high value material quickly. However the NPV of a project is not

all-encompassing and modern mining projects are increasingly designed to be developed in a

sustainable manner that responsibly considers the social and environmental impact of the

operation both locally and globally. Some mines may be developed or operated for reasons other

than purely economic; such as for social reasons or as a matter of national security. Even in these

circumstances decisions are generally still made based on economic criteria [6].

The net present value of a project is calculated as follows:

NPV =

n∑
t=1

Rt

(1 + i)t
(2.1)

Rt is the net cash flow at time t, i is the discount rate, and n is the number of time periods.

The discount rate is generally a difficult parameter to define and is often dictated by corporate

policy and other concerns. There are valid criticisms of the NPV approach to mine design -

especially when the project may have long-term benefits which can be hard to quantify [7].

Additionally it is often common in the mining industry to use a relatively high discount rate such

that the denominator in each term of Equation 2.1 grows rapidly and the cash flows in later years
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become much less meaningful, which may not be desired.

It is imperative for the open-pit mine plan to operate in line with all relevant legal,

environmental, and social requirements. These objectives generally take the form of constraints

which necessarily reduce the net present value. Indeed, all secondary objectives can only lead to a

decrease in NPV which should always be quantified and understood [8].

Mine planning is a field which is rife with uncertainty. The typical open-pit mine plan samples

a minuscule fraction of the deposit prior to mining which can lead to large unknowns with respect

to the underlying deposit geometry and grades. The mine planner does not know with a high

degree of precision how much ore there is, or its exact makeup. Additionally, the fundamental

economic quantities such as commodity price and external costs are uncertain. The value of these

parameters are dictated by external markets and may change drastically during the decades that

the mine is operating. Some mines are located in countries where political upheaval represents a

substantial risk. Addressing uncertainty explicitly, instead of simply being conservative, is

preferred [8]. This may involve incorporating risk into the objective, such as using a

Risk-adjusted NPV or incorporating a maximum allowable level of risk as a constraint.

2.1.2 Mine Planning Process

The design of open-pit mines is characterized by a cyclical process of assuming, planning,

evaluating, refining, and then revisiting the original assumptions. It is not feasible to design an

entire open-pit mine plan straight through because there is no way to make a single starting

decision that does not depend on later ones.

Consider, for example, trying to define the ultimate extents of the open-pit. These extents are

very useful for quantifying the contained resource, and thereby the total potential revenue from

the mining operation. Additionally, the extents help inform where to place any supporting

infrastructure such as dumps, processing facilities, and tailings ponds. The ultimate extents also

give a planner a means to assess the total mined tonnage and thereby the mine life, provided that

the mining rate is known. However, it is not possible to determine the optimal ultimate open-pit

extents without knowing the mining cost which directly depends on things such as the

infrastructure locations, chosen equipment, and so on. Therefore the overall open-pit mine

planning process is a circular process which relies on slowly converging on a good mine plan
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through repeatedly revisiting earlier decisions and assumptions [9–11].

In general an open-pit mine is planned and designed at three main levels of detail:

• Long Range Plans are typically updated yearly or at longer intervals and provide a basis for

reporting contained reserves and contain the actionable life-of-mine plan. A long range plan

gives a good handle on the mineral inventory and decisions which have a lasting impact,

such as where infrastructure is placed and any major operational changes that may require

large capital expenses. Long-term price forecasts are considered and a higher degree of

uncertainty is accepted. In a long range plan the optimization problems are concerned with

much larger volumes at a lower level of precision.

• Medium Range Plans are updated at a higher frequency than long range plans and generally

dictate the operation on a monthly or quarterly basis. A medium term plan would only be

concerned with short-term price forecasts and decisions that impact the more immediate

operation such as blending or stockpiling concerns. Medium range plans may look at

extraction sequences on a monthly or quarterly level with consideration for equipment

allocation or shorter term haul roads.

• Short Range Plans consider smaller volumes of material with higher precision and greater

frequency. Short range plans may be developed weekly or to dictate a single day’s

operation. They consider the current state of the mine, the plant, and immediately available

blast hole data to decide where material should be routed to maximize profit and maintain

appropriate blending. The decisions made at this timescale are irreversible and have

immediate impacts on the operation.

The information effect is an important aspect of open-pit mine planning. The long range plans

are developed with different data availability than short range plans, as new data is constantly

being collected and incorporated throughout the mine life. This new data allows short range

plans to operate with less uncertainty, but flexibility is greatly reduced as it is not possible to

revisit earlier decisions at this stage.
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2.1.3 Open-Pit Mine Modeling

An open-pit mine model is a mathematical representation of a real-world mine developed to

aid in decision making and provide insight. These models depart from the real world in many

ways to make them more manageable and more useful. Models are designed in conjunction with

geologists, geostatisticians, geotechnical engineers, and others. These models are then used for a

wide range of tasks described in Section 2.1.4.

In this section we describe the general character of open-pit mine models, how they are

constructed, the typical variables present in a workable model and the relevant global parameters.

The most fundamental set of geometric constraints to open-pit mine modeling, the precedence

constraints, are also described.

2.1.3.1 Model Framework

The primary type of model used in modern open-pit mine planning is the block model. A

block model divides the area of interest into a set of non-overlapping volumes, called blocks,

which are then populated with a wide range of different attributes. Regular block models are

constructed from blocks all of the same shape and size arranged in a regular rectangular grid,

however irregular block models are also used which may have blocks of different shapes or sizes.

The regular block model is the most common and consists of a few main parameters.

• The origin, which is a point in space defined relative to some datum or at some site specific

location. Commonly set to the lowest, leftmost, frontmost point of the model but may be at

any of the other 8 corners of the model. The origin is either at the centroid of the block or

its outside corner. In Figure 2.1 the origin is denoted with the dot and notated ox, oy, oz.

• The block size or, equivalently, the block spacing. This parameter defines the shape of each

individual block and is chosen to balance a few concerns. The vertical size of the blocks are

typically linked to the bench height, on the range of 10 to 20 meters [12], and the horizontal

dimensions are generally similar to maintain a roughly cubical aspect ratio. In Figure 2.1

the block sizes are notated sx, sy, sz.

• The number of blocks along the 3 coordinate axes. This, along with the block size and

origin, controls the extent of the block model. In Figure 2.1 the number of blocks is notated
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nx, ny, nz.

• The block model orientation, often a single azimuth angle, allows for the model to rotate

around the z axis and not be aligned with the underlying coordinate system in order to

more closely follow the local geology. Block models are very rarely rotated again around the

x or y axes.

x
y

z
ox, oy, oz

nx

ny

nz

sx sy

sz

Figure 2.1 The structure and parameters of a regular 3D block model

Each block in a regular block model is often considered a selective mining unit or SMU, which

corresponds to “The smallest volume of material that can be selectively extracted as ore or

waste” [13]. However, in Section 2.4 we see evidence that open-pit mine planners do not typically

allow for mine plans to treat single blocks, or even a handful, as extractable. Instead most mine

plans require a small contiguous group of blocks to be extracted all as one.

The primary reason that most mines do not scale the blocks themselves larger to avoid this

issue is that you lose out on modeling precision, you may have difficulty recreating the precedence

constraints discussed in Section 2.1.3.4, and there may be costly aliasing effects. Larger blocks

include additional dilution which may significantly impact the valuation of a deposit and mine

plan. If that dilution is in excess of the bare minimum dilution required due to a mine’s operating

parameters, it could lead to under-estimating the value of a deposit and making sub-optimal

decisions or incurring substantial opportunity costs.
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On the other hand, if a modeler elects to reduce the block size in order to more precisely

represent the underlying geology they face two major challenges. The first is that it is much

harder to accurately estimate smaller block sizes and the uncertainty inherent in these estimates

may not be properly understood or accounted for in downstream applications. The second is

more practical; as you reduce the size of each block you must also increase the number of blocks

in order to retain coverage over the area of interest which can quickly overwhelm downstream

algorithms and procedures. Reducing the size of blocks in half along each axis leads to an eight

times increase in the number of blocks required.

Regular block models generally lead to computationally efficient algorithms and are well

suited to the procedures in the following sections. For example, regular block models do not need

to store every block’s individual coordinates as they can be calculated rapidly from the block’s

indices. If the model is organized such that 0th block is the lowest, frontmost, leftmost block and

the blocks are numbered sequentially first along the x direction, then y, and finally z the block’s

one dimensional index i is given as:

i = iz · ny · nx + iy · nx + ix (2.2)

Where the number of blocks in the x, y, and z directions are denoted nx, ny, nz respectively.

The indices along the x, y, and z directions are similarly denoted ix, iy, iz. The individual indices

can be recovered from the one dimensional index i using the following three equations using

integer division (truncating the fractional part) and where % is the modulo operator which yields

the remainder following division.

ix = i % nx (2.3)

iy =
i

nx
% ny (2.4)

iz =
i

nx · ny
(2.5)

Regular block models, with their efficient and consistent structure, are well suited for

accurately representing precedence constraints (Section 2.1.3.4), and minimum mining widths

(Section 2.4). However, there are downsides to regular block models. They generally include a lot

of superfluous information especially around the edges and the lower benches which wastes space
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and slows processing. Additionally there may be certain deposit types for which a one size fits all

approach is not warranted.

Irregular block models are much more varied and flexible than regular block models and

therefore more complex. Sub-blocked models retain rectangular prism shaped blocks but vary the

sizes of individual blocks to align with the underlying geometry. For example, large waste regions

may be modeled with just a few blocks that take up a lot of space. Then along a geologic contact

the blocks are made much smaller to capture the boundary. A vertical cross section through a sub

blocked model is included on the left in Figure 2.2. This form of block model is more typically

used with underground mines, but still has its place in open-pit mine modeling.

x

z

Figure 2.2 Vertical sections through two irregular block model types (left) a sub-blocked model
(right) a stratigraphic block model

A second form of irregular block model, the stratigraphic block model, is shown on the right in

Figure 2.2. This type of block model is used for stratigraphic ore bodies where there are generally

laterally expansive layers where the thickness of each layer is important to capture accurately.

There are many other different types of irregular block models including ones which deviate from

rectangular prisms and those which cover irregular non rectilinear areas. However, by far the

most common model framework is the regular 3D block model.

2.1.3.2 Model Estimation and Simulation

Once the framework, typically a regular 3D block model, is defined geologists and

geostatisticians use a wide range of data and techniques to fill that model with the relevant

information required for mine planning. Rossi and Deutsch [13], describe the four main
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components of the mineral resource estimation process as:

• Data collection and management, which includes concerns involving drilling and sampling

theory. The truism ‘Garbage in Garbage out’ is especially relevant during model estimation

and simulation as any errors at this stage propagate through all the following stages and

lead to erroneous information which can lead to costly mistakes and opportunity costs.

• Geologic interpretation and modeling, is the process by which geologic data and

mathematical techniques are combined to create realistic geologic domains for downstream

steps. The domain model assigns rock types, or similar classifications, to areas within the

model and can be used to evaluate contained tonnage and provides the groupings within

which the downstream grade estimation and simulation techniques are applied.

• Grades assignment, involves identifying the variables of interest and filling them in around

and between the drill holes. These are generally the concentrations of different elements,

called ‘grades’, or other continuous properties. However, geometallurgical variables, which

may be nonlinear, might also be considered; which necessitates more complicated

procedures. The grade assignment process can use many different approaches that have

several practical and theoretical challenges which need to be overcome to create a accurate

and precise model free of bias or other types of error.

• Assessing and managing geologic and grade uncertainty. As previously discussed, there are

many sources of uncertainty in the mining process and some of these uncertainties can be

evaluated during model estimation. There is uncertainty in the data, the geologic modeling,

and within the grade assignment process which must be quantified and considered carefully.

Note that there may be several different models used for different purposes in mine planning

all following the above four steps. This is in part due to the information effect discussed in Section

2.1.2. For example, the new data obtained from blast holes may permit a higher resolution model

over a smaller area, such as a single blast or bench, that can be used in short term planning.

The data used for model estimation and simulation must be of good quality and free of

systematic bias. It must be representative; such that it is spatially spread out and not overly

concentrated in one area or biased to specific types of material. This can be complicated by both
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the expense of collecting data and the desire of project managers to drill high value holes that

provide better sounding press than statistical merit. Mining operations sample a minute fraction

of the mineral deposit through different means including; trenches, drill holes; including both

reverse circulation and diamond drill holes, and test pits. The sampled material is then processed

through a variety of tests and assay procedures to quantify the relevant mineral concentrations.

Site specific data may also be inferred through geophysical methods such as magnetic surveys,

electromagnetic methods, or reflection seismology [14]. Geophysical data has different

considerations than directly sampled data, but the principles of ensuring quality control,

understanding sampling variance, and avoiding errors are the same. In all situations the data must

be correctly managed, safely stored, and verified through regular audits as all of the subsequent

steps use that data to develop realistic models which are then used for mine planning and design.

The geologic model is responsible for defining estimation domains and dictating how to pool

data together into relevant stationary zones. A mining operation is primarily concerned with

making decisions to most economically develop the deposit so the geologic model is designed to

provide the necessary information for this task. Domains identified in a geologic model may be

based on both alteration and structural geologic variables depending on the mineral deposit.

Stationarity refers to only grouping variables of like statistical and geologic properties together.

Combining data from different statistical populations leads to poorer quality estimates.

There are several techniques used to develop geologic models including; manual interpretation

on sections, indicator Kriging methods, implicit modeling, machine learning approaches and

others [15]. Each technique has different advantages, disadvantages, and areas of applicability. In

all cases the mixing of different mineralization types should be strictly minimized as this leads to

poor quality estimates that may skew resulting tonnage and minerals concentration estimates. It

is important to consider uncertainty within the geologic model as the boundaries are never

sufficiently sampled to give an absolutely precise delineation between zones. Some methods can

consider uncertainty directly; as is the case with indicator simulation or using the so-called

‘uncertainty parameter’ within implicit modeling, however others may require additional effort.

This information has to be accurately communicated to the downstream mine planning engineer

and other model users.
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Once a domain model has been developed, audited, and verified it is necessary to estimate

mineral concentrations and other variables of interest within the identified domains. The variables

in mineral deposits exhibit spatial dependence because they are formed through natural processes

following well defined, if not completely understood, rules [16]. It is valuable to describe this

spatial dependence, typically through a variogram or similar measure, in order to inform the

estimation process. Earlier, less sophisticated, estimation techniques, such as nearest neighbor or

inverse distance, do not incorporate a variogram directly.

Kriging is a method for estimating continuous variables using a direct model of spatial

variability that minimizes the expected error variance [13]. There are several types of Kriging

with varied levels of applicability to different models including simple Kriging, ordinary Kriging,

Kriging with a trend or external drift model. Each approach is selected based on the geologic and

statistical nature of the domain, data availability and the variable of interest [17]. Regardless of

the method selected, modelers must justify their choice and perform various checks including

cross validation, and visual and statistical verification. Additionally models should be calibrated

to other data sources such as production data if possible.

Of extreme importance to the entire modeling process is the understanding that the models

are subsequently used to make specific mine planning decisions. The technical nature of the

model and the different considerations must be accurately transmitted to the downstream

consumers of the models, including considerations such as how dilution has been handled and how

to use each variable in the model.

As introduced in Section 2.1.1, uncertainty is inherent in the mine planning and geologic

modeling process. A typical mining operation only samples a minuscule fraction of the mineral

deposit before development. The estimation techniques introduced above provide a single,

hopefully high quality, estimate for the unsampled locations but this averaging process does not

explicitly consider the geologic uncertainty. Simulation is a process by which multiple geologic

realizations can be generated from the input data and, when taken as a whole, can aid in

understanding. One major advantage of simulation is demonstrated in Figure 2.3, where we see

how multiple realizations can be used to create multiple plans which, when taken as an ensemble,

provide information on multiple possible outcomes.
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Single Estimate Single Plan Single Response

Multiple Realizations Multiple Plans Multiple Responses

Figure 2.3 Applying mine planning to estimated and simulated models. A single response
provides no information on uncertainty. Multiple realizations can provide more information

A growing challenge in mine planning is to properly account for the geologic uncertainty.

However, the workflow implied by Figure 2.3 is not the ultimate ideal. Instead of determining the

best mine plan for a specific realization or even the best plans for multiple realizations it is

preferred to create the best mine plan in the presence of uncertainty.

2.1.3.3 Typical Model Variables and Global Parameters

An open-pit mining operation is planned and developed in response to a wide range of model

variables and global parameters. A model variable is a metric that varies by location throughout

the mining area and is typically stored within the block model described earlier. Parameters do

not vary by location however they may vary by time. All inputs including model variables, global

parameters, and other information are uncertain and considered as either estimates or as a part of

some potentially unknown distribution.

At minimum a geologic model for mine planning consists of a usable rock type model, density,

relevant mineral concentrations, and a resource classification. More sophisticated models may

include additional variables such as geometallurgical indices, or additional information that can

help guide the mine planning process.

The most impactful global parameter on the open-pit mine planning process is the commodity

price [8]. This parameter can singlehandedly make or break a mining operation and
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fundamentally alters the way that the mine operates including dictating the optimal production

rate and the final pit limits. Unfortunately the commodity price is also one of the most uncertain

parameters and depends on many factors outside of the mining operation’s control. To combat

this uncertainty mines may negotiate longer term contracts or use a variety of other economic and

financial means to try and avoid disruptive price drops and still be able to take advantage of price

increases.

The planning engineer typically designs multiple plans and schedules based around at least

three different price forecasts: a middling price forecast which aligns with the general expectation,

a low price forecast which is pessimistic, and a high price optimistic forecast. In certain

circumstances many more price forecasts can be considered which are generated using a

simulation process or a method akin to random walks as shown in Figure 2.4.
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Figure 2.4 Example price forecasts for mine planning generated by using random walks

These variables and global parameters are drivers for some the most important design

parameters of an open-pit mine planning operation [8] including:

• The total product produced which is an upper bound on any potential revenue from

processing a block and directly informs material routing and valuation. For example in a

gold mining operation the gold grade (typically measured in grams per tonne) along with
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density and the volume of the block gives an upper bound on the potential product

available for recovery. No current processing methodology can achieve 100% recovery of the

minerals of interest, and different element interactions can be quite complicated.

• The mining costs include costs associated with drilling, blasting, loading, and hauling the

material. Mining costs are applied on a dollar per ton basis and varies by depth, and

distance to the relevant processing facility or waste dump.

• The processing costs are applied to material which is processed in, for example, a processing

plant or a leach pad. Processing costs have to include the cost of any reagents used, energy

consumed, and tailings rehabilitation.

• The material destination, or material classification, is the selected process stream for the

mined material. A given mine may have many different possible material classifications

including different streams for waste and ore of different grades and properties.

• The economic block value, or EBV, is a combination of the above design parameters which

indicates the, generally undiscounted, value of a block if it were mined and sent to the

appropriate material destination. This parameter may be provided on a per destination

basis, or assuming that the material can be processed via the most economic process.

• The pit slopes dictate the precedence constraints described in the following section and vary

based on rock type, and direction. Large scale structural geology features, such as faults

and joint sets, have a strong impact on the allowable pit slopes.

The economic block value is of utmost importance in the following chapters. At its core

economic block value is defined as revenues less costs. A simple economic block value formula

may have the following form:

vb = To · g · r · P − To · PC − T ·MC (2.6)

Where vb is the economic block value for block b. To is the ore tonnage, T is the total tonnage,

g is the grade, r is the recovery as a proportion of recovered material between 0 and 1. P is the

commodity price, PC is the processing cost in dollars per ton of ore, and MC is the mining cost.
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In practice a much more complicated procedure is often used to calculate economic block value

based on a wide range of additional local and global variables and parameters [18, 19].

In Chapters 3 and 4 the economic block value variable and pit slopes are used. Chapter 5

requires additional variables including the discount rate, material classification, and others.

2.1.3.4 Precedence Constraints

Unlike underground mines, which use a variety of techniques to support the material above

the deposit, open-pit mines progress downwards, removing successive benches of material in a

cone-like shape. The slope of the cone is based on the strength of the material being mined, its

geotechnical properties, and other structural geologic factors. This slope generally varies by both

location and direction throughout the mining area as the composition of the material changes and

certain geologic features are more prone to different failure modes in different directions.

Geotechnical engineers are responsible for using field data and sophisticated modeling techniques

to determine safe pit slopes that protect individuals, equipment, and prevent slides that could

lead to injury, expensive re-handling, and other difficulties.

The geotechnical understanding of the area is used to create precedence constraints, which are

used in combination with the variables described in Section 2.1.3.3 as inputs for the techniques in

Section 2.1.4. Precedence constraints encode the physical relationships between blocks and

indicate that ‘this block cannot be mined, until all of these other blocks are mined.’ They are

generally modeled as pairwise relationships between blocks and denoted with a directed arc from

the lower, base block to the higher block. Precedence relationships are common across any

optimization or scheduling technique that operates on an open-pit mine and must be constructed

correctly and efficiently to avoid unsafe deviations from the geotechnical model.

Lerchs and Grossmann proposed two precedence schemes in their seminal 1965 paper on the

ultimate pit problem [20]. The first scheme uses an irregular model where the odd layers are offset

from the even layers by half of the block size; which is an uncommon block model configuration.

The second precedence scheme, commonly now called the 1:5 pattern, connects each block to the

five blocks immediately above it in a cross pattern which is locally precise but globally inaccurate.

When the 1:5 pattern is applied with larger block models and over several benches it creates

diamond shaped pits that deviate substantially from 45° in the off axis directions.
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To account for the deviations from 45° in the off axis directions, Gilbert in 1966 developed the

1:5:9 pattern which varies the precedence scheme by level [21]. The 1:5:9 pattern alternates

between connecting every block to the five above it in a cross pattern and connecting every block

to the nine above it in a square. Lipkewich and Borgman introduced the “Knight’s move” pattern

in 1969 which connects each base block to the five immediately above it in a cross and eight more

blocks two benches above that are offset by a knight’s move as in chess [22]. Note that both of

these patterns only approximates 45° when the block model has isometric block sizes. These small

precedence patterns are shown in Figure 2.5.

x
y

z

A) B)

C) D)

Figure 2.5 Small precedence schemes. (A, B) from Lerchs and Grossmann, (C) the “1:5:9” scheme
from Gilbert, (D) The “Knight’s Move” scheme from Lipkewich and Borgman [20–22]

Chen, in 1976, apply variable slope angles and varying cone templates across the deposit to

more faithfully recreate the geometrical and operational constraints [23]. Pit slopes that vary by

direction require some form of interpolation between the specified directions. Researchers have

used splines, ellipsoids, and inverse distance interpolation for this purpose [24–26].

Precedence schemes must be generated so that they realistically reflect the geometrical

constraints and such that they are computationally tractable and efficient. The techniques in

subsequent chapters are sensitive to the problem size, so generating unnecessary precedence

constraints should be avoided. The “Minimum search patterns” from Caccetta and Giannini are

designed to accurately recreate arbitrary slope requirements and consist of the fewest constraints

possible [24]. Their approach is included in Algorithm 1, and is discussed further in Section 3.2.2

alongside an efficient and open-source implementation.
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Algorithm 1: Algorithm to generate minimum search patterns, adapted from Caccetta
and Giannini 1988[24]

Input : A list of azimuth slope pairs A: as a list of pairs defining the corresponding
azimuth and pit slope.

Input : The maximum number of benches in the output pattern Nz. Note: this is
generally less than the number of benches in the input model.

Input : The block dimensions: sx, sy, sz

Output: The minimum search pattern S: as a list of 3-tuple offsets in the x, y, and z
directions.

// Maintain a list of tagged blocks, as offsets

T ← ∅;
for l← 1 to Nz do

for all untagged blocks on this level which violate the slope constraints do
S ← S ∪ {this block};
T ← T ∪ {this block};

for all tagged blocks do
Apply current search pattern to this block;

2.1.4 Open-Pit Planning Subproblems

An open-pit mine plan consists of several different studies at different levels of detail all with

different individual subproblems. The scope of a particular study may allow for large strategic

changes to the mine’s development or instead operate within a pre-defined strategy which was

chosen based on an earlier study. The subproblems present in the open-pit planning process are

applied as necessary to answer specific questions and inform subsequent decision making [27, 28]

Some of the most important subproblems in the open-pit mine planning process are listed below.

• The ultimate pit problem was originally described in 1965 by Lerchs and Grossmann [20]

and is concerned with determining the final limits of an open-pit mining operation such that

mining any more material would require removing so much waste that it would be

uneconomic. The majority of this dissertation is devoted to this subproblem and it is

discussed in Section 2.2 in detail and further in Chapters 3 and 4.

• Pit parameterization is the process by which many ultimate pits are constructed for further

analysis originally found in Lerchs and Grossmann’s seminal paper and further described by

Matheron in 1975 [29]. There are several techniques for pit parameterization including using

a revenue factor, cost factor, or a constant decrement on block values among others
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[11, 30, 31]. Although pit parameterization can give some indication of an overall sequence,

it does not typically divide the material into yearly volumes or handle other relevant

concerns. Pit parameterization is discussed in 2.3.1, and a small extension is presented in

Appendix B.

• Block scheduling is an extension to pit parameterization in that the output is still a set of

nested production volumes, however, the optimization process and relevant parameters are

substantially more complex. A production schedule directly considers the time value of

money along with blending, stockpiling, and other concerns. This subproblem is discussed

in more detail in Section 2.3 and extended to consider operational constraints in Chapter 5.

• Cut off grade optimization is used to determine the best cutoffs to discriminate between ore

and waste during the scheduling process. Using conventional break-even cutoff grades does

not directly optimize NPV and instead maximizes undiscounted cash flows [32]. For this

reason a higher cutoff grade is commonly used early in the process which is lowered to the

break-even cutoff grade over time [33, 34].

• Grade control polygon optimization is applied in short term planning on a daily or weekly

basis to define operable mining polygons to assign material to the different processes

[35–38]. This optimization problem is directly related to the problems discussed in this

dissertation, in that it requires directly handling minimum mining widths, although it falls

outside the scope of this work.

Grade control polygon optimization is a subproblem considered in the short term planning

space with smaller volumes of material, typically a small portion of a bench that corresponds to a

single blast. A block model containing economic block value variables for each possible

destination is constructed, as shown on the left in Figure 2.6. The reclassified model, on the right,

is constructed to reclassify the blocks to satisfy minimum mining width constraints and maximize

economic value.

This section provided an overview of just a few of the problems typically faced by the open-pit

mine planning engineer. There are many additional subproblems in open-pit mine planning which

can vary from deposit to deposit and mine to mine such as optimizing the haulage network and
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infrastructure placement. The following sections discuss two of the fundamental subproblems in

more detail which are the focus of this dissertation: The ultimate pit problem, and the block

scheduling problem.

x

y

Mill
Leach
Dump

MREV $165.78
LREV $132.66
DREV -$3.00

MREV $13.92
LREV -$3.22
DREV -$3.00

MREV $23.88
LREV $30.08
DREV -$3.00

Reclassified

Figure 2.6 The grade control polygon optimization problem takes a bench classification (left) and
creates an operable set of polygons (right). The operable polygons satisfy minimum mining width
constraints and maximize undiscounted cash flow

2.2 The Ultimate Pit Problem

The ultimate pit problem, [20], is an important subproblem in the open-pit mine planning

process. Its narrow focus allows it to be applied to large models and give initial results that can

be used to inform infrastructure placement, assist in equipment selection, perform parametric

analysis, and guide many other aspects of designing and scheduling a surface mining operation

[39–42]. The ultimate pit problem possesses a unique mathematical structure which makes it

amenable to several different approaches including very efficient methods from network

optimization. Specifically the problem can be cast as a network flow problem which is the current

best approach for large models with dozens or hundreds of millions of blocks.

Graphically the ultimate pit problem is shown in Figure 2.7 for a single vertical section

through a synthetic ore body. The economic block values and the precedence constraints are used

to identify the blocks which together maximize the undiscounted value and satisfy the precedence

constraints. This subset of blocks is called the ultimate pit and is not only used in the context of
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determining when a mining operation should cease production but also in informing many

engineering decisions in the mine planning process, generating outer bounds for scheduling, and

several other contexts.
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Figure 2.7 The ultimate pit problem requires an economic block value model, (left) and
precedence constraints, as directed arcs between blocks, (middle) in order to identify the ultimate
pit limits (right)

In practice the ultimate pit can be calculated rapidly for very large 3D models. The example

3D ultimate pit shown in Figure 2.8 is for a relatively small model with 374,400 input blocks and

7,116,016 precedence constraints however even models with hundreds of millions of blocks and

billions of precedence constraints are attainable. This is not unrealistic; as many modern open-pit

mining complexes use very large models with smaller blocks for a variety of reasons [43].

The remainder of this section describes three formulations for the ultimate pit problem

including the original network based formulation, the linear programming formulation, and the

max-flow / min-cut formulation. Then four methods for solving the ultimate pit problem are

described: The Lerchs & Grossmann algorithm, the heuristic floating / moving cone algorithm,

the pseudoflow algorithm, and the special case 2D dynamic programming algorithm. Finally we

present a brief survey of alternative methods which are less commonly used.

2.2.1 Original Network Formulation

In 1965, Lerchs and Grossmann originally described the ultimate pit problem in the context of

a custom network algorithm for determining the smallest maximum valued closure of a weighted

directed network [20]. A network, also called a graph, is a structure for modeling pairwise

relationships between objects. Networks are extremely useful structures for all kinds of real world

problems and are commonly found in many different areas in open-pit mine optimization and

planning.
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Figure 2.8 An example 3D ultimate pit calculated from a 374,400 block model

The nodes of the network represent some object and are connected in pairwise relationships

via directed or undirected arcs. A directed arc is used when there is some order to the nodes, or a

specific orientation inherent in the relationship. The beginning node is called the tail, and the

ending node is called the head. Undirected arcs do not have any order but are merely used to

indicate that the relationship exists. A weighted network may have weights associated with nodes,

arcs, or both. The weights are some scalar value that could have many different meanings

depending on the context.

In Lerchs and Grossmann’s description of the ultimate pit problem blocks are represented by

weighted nodes with the weight being the economic block value. Blocks are then connected by

directed arcs from lower blocks to upper blocks following the precedence constraints. The

resulting network has no cycles by construction and therefore is classified as a directed acyclic

network. A closure of a directed acyclic network is a set of nodes such that there are no arcs with

their tail inside the closure and their head outside. All closures of this network are valid pits and

do not violate any precedence constraints. The ultimate pit is the smallest maximum valued

closure and Lerchs and Grossmann developed an algorithm for identifying this closure, described

in Section 2.2.4.

Figure 2.9 shows an example network that corresponds to a very small example ultimate pit

problem. This model consists of only 12 blocks which are not arranged in the typical rectilinear

grid, instead they each only have two precedence constraints indicated by the directed arcs. The
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marked closure is the maximum valued closure and corresponds to the ultimate pit with a total

contained value of 2 units.

-3 5 -3

-2 -2 1 2

-1 -1 -1 -1 -1

directed
arc

node
closure

tail

head

Figure 2.9 Example weighted directed acyclic network with labeled maximum valued closure

A few more definitions are required to properly describe the Lerchs and Grossmann algorithm

and network flow approaches. Paths are sequences of arcs such that each subsequent arc shares a

common node. In many situations paths are constrained such that they can only go through

nodes and arcs at most once and they may be restricted to only travel along directed arcs from

tail to head. Paths in networks with undirected arcs do not have this restriction. In directed

networks where the sequence of arcs does not have any orientation restrictions this is sometimes

called a chain. A network such that any two nodes are connected by exactly one path is called a

tree. The tree may contain a special node designated a root from which there could be many

subtrees or branches, which are themselves trees when ‘detached’ from the root.

2.2.2 Linear Programming Formulation

The linear programming formulation for the ultimate pit problem is useful theoretically and as

a means of communicating the problem clearly. Ultimate pit solvers do not typically use this

formulation directly with the simplex algorithm or another general purpose linear programming

solver; but it is still useful and is strongly related to the subsequent max-flow / min-cut

formulation in Section 2.2.3. Linear programming is discussed in more detail in Section 2.5.2.

The ultimate pit problem as a linear program is defined as follows [44–46]:
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Sets:

• b ∈ B, the set of all blocks. Commonly based on a regular block model. See Section 2.1.3.1.

• b̂ ∈ B̂b, the set of antecedent blocks that must be mined if block b is to be mined in order to

honor pit slope requirements. These sets are derived from the precedence constraints

described in Section 2.1.3.4.

Parameters:

• vb, the economic block value of block b. See Section 2.1.3.3.

Variables:

• Xb, the proportion of block b which is mined in the ultimate pit

The Ultimate Pit Problem:

maximize
∑
b∈B

vbXb (2.7)

s.t. Xb −Xb̂ ≤ 0 ∀b ∈ B, b̂ ∈ B̂b (2.8)

0 ≤ Xb ≤ 1 ∀b ∈ B (2.9)

Equation 2.7 maximizes the total contained value of ore and waste blocks mined within the

ultimate pit. Equation 2.8 enforces precedence constraints. Note that for any block b to attain a

value of 1 all of its antecedent blocks b̂ must already have a value of 1 or else this constraint

would be violated. Equation 2.9 enforces bounds on the main variable to disallow mining a

negative proportion or more material than is present.

Importantly it is not necessary to restrict the variable Xb to only integral values. This is

inherently satisfied because the precedence constraints form a totally unimodular system [47].

2.2.3 Min Cut Formulation

In 1968 Johnson showed the ultimate pit problem can be formulated as a max-flow / min-cut

network problem [44]. This reformulation was also demonstrated by Picard in 1976 alongside

further mathematical justifications [48]. The construction is based on taking the dual of the linear
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programming formulation in the previous section and performing some appropriate manipulations.

Johnson recommended Ford and Fulkerson’s labeling algorithm to solve the max-flow / min-cut

formulation of the ultimate pit problem. This formulation gives rise to the currently fastest known

methods of solving the ultimate pit problem; specifically Hochbaum’s pseudoflow algorithm [46].

A flow network differs from other networks in a few respects. First two nodes are identified as

the source, denoted S, and the sink, denoted T . Each directed arc is then capable of carrying

some non negative integer amount of flow from its tail to its head up to some specified capacity.

Each node, other than the source and the sink, are required to satisfy a flow balance constraint

such that the inflow is equal to the outflow. Flow networks are used for many purposes such as

modeling traffic on roads, fluids flowing through pipes, power flowing along electrical grids, and

others [49]. Ford and Fulkerson developed much of the initial theory on flow networks including

the important max-flow / min-cut theorem [50].

Each well-formed flow network generally has many possible valid flows, which are assignments

of flow values to each arc in the network. As previously mentioned these flows are constrained

such that the flow on an arc cannot exceed the arc’s capacity, and also such that for every node

(except the source and sink) the total inflow into the node is equal to the total outflow from the

node. Each flow network has a max flow which is an assignment of flow such that the outflow

from the sink (and thereby the inflow into the source) is maximized. There are many procedures

for determining the max flow including augmenting paths [50, 51], the push-relabel algorithm

[52, 53], and the pseudoflow algorithm [46, 54, 55].

Also in any given flow network there are many ways to cut the network into two pieces. This

cut is accomplished by removing a set of arcs, called the cut-set. If, once the cut-set arcs are

removed, the flow network is divided neatly into two pieces with the source on one side, the sink

on the other, and such that there are no paths along directed arcs from the source to the sink this

cut is called an s-t cut. In an s-t cut it is only required to remove arcs which are directed from

the source side to the sink side and any arcs that are directed from the sink side to the source side

are not a part of the s-t cut. The capacity of the s-t cut is the sum of the arc’s capacity in its

cut-set. The s-t cut which corresponds to the minimum capacity is called the minimum cut of the

flow network.
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Ford and Fulkerson’s max-flow / min-cut theorem states that the maximum flow of a flow

network is equal to the minimum cut of the same flow network. Intuitively this is because the arcs

which are a part of the minimum cut’s cut-set form the ‘bottleneck’ of the flow network. There is

no way to sneak more flow through the cut-set without increasing its capacity. The formal proof

of this theorem proves that if the maximum flow did not equal the minimum cut there would be a

contradiction [50].

For our purposes, in the mining industry, this is a very useful result because using Johnson’s

construction our desired ultimate pit directly corresponds to the source side of the minimum cut.

If one is able to find the maximum flow through some means then the minimum cut can be

extracted, and thereby the ultimate pit. Or, if an algorithm gives the minimum cut directly this

also immediately reveals the ultimate pit.

Practically a given ultimate pit problem is transformed by representing each block as a node

in the network, however unlike Lerchs and Grossmann’s network formulation the nodes do not

have any associated weight. The source and sink nodes are added, and each node corresponding

to a positively valued block is connected by a directed arc from the source with a capacity equal

to the economic value. Nodes with negative values are connected with a directed arc towards the

sink with a capacity equal to the absolute value of their economic value. Nodes that correspond

to blocks with zero economic value do not need to be connected to the source or the sink. Finally,

each precedence constraint is incorporated by including a directed arc between the lower and

higher block with infinite capacity. An example transformation of an ultimate pit problem is

shown in Figure 2.10.

In Figure 2.10 the capacity of each arc in the flow network is the denominator of the fraction

shown on each arc. The flow, which in this case corresponds to the maximum flow, is the

numerator. The minimum cut is represented by the dashed line which goes through the four

bolded arcs, the sum of the capacities of the arcs in this set is 9 which is equal to the maximum

flow. The difference between this value and the sum of the capacities of the source adjacent arcs

is the ultimate pit value. Note that the nodes on the source side of the minimum cut, which are

colored darker, are exactly the ultimate pit.

30



x

z
7 3

-2 -2 -2 -4

S T

2/∞

2/∞

2/∞

0/∞

0/∞

3/∞

6/7

3/3

2/2

2/2

2/2

3/4

Figure 2.10 Example transformation of an ultimate pit problem (left) into source-sink form for
solving with a max-flow or min-cut algorithm. Figure adapted with permission from Deutsch,
Dağdelen, and Johnson 2022 [56]

2.2.4 The Lerchs & Grossmann Algorithm

In their seminal 1965 paper, Lerchs and Grossmann proposed two approaches to solving the

ultimate pit problem [20]. The simpler approach based on dynamic programming which is only

applicable to two dimensional cross sections is described in Section 2.2.7. The more general

approach, based on network theory, is reviewed here.

The Lerchs and Grossmann algorithm is an iterative algorithm which identifies the maximum

closure of a directed network. It begins with a infeasible solution and iterates through primal

infeasible solutions until it identifies the first primal feasible solution which is the optimal

solution. The solution at each stage is the current collection of strong nodes, which begins as the

set of all positive blocks and ends as the set corresponding to the ultimate pit.

Instead of operating with the original directed network which contains all of the precedence

constraints, the Lerchs and Grossmann algorithm uses an augmented network which contains a

special artificial root node which is originally connected to every node with a directed arc

beginning at the artificial root. The augmented network is a tree at initialization and remains a

tree throughout the entire process. Nodes within the augmented network are denoted as strong or

weak depending on the sum of all the associated block values within their branch. Initially

positive nodes are classified as strong, and non-positive nodes are classified as weak. This

initialization step is shown in Figure 2.11, the example ultimate pit problem (left) is transformed

into the augmented network (right) with each node connected to the artificial root. The strong

branches (colored darker) form the initial solution.
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Figure 2.11 The initialization step for the Lerchs and Grossmann algorithm.

In addition to classifying nodes based on strength, arcs within the augmented network are

classified based on their direction and strength. The direction classification of an arc depends on

its direction relative to the chain originating at the artificial root and passing through the arc. If

the arc is pointing toward the root it is considered a m-arc or minus-arc and if it is pointing away

from the root it is a p-arc or a plus-arc. The strength of an arc depends on the net value of the

nodes which are supported by the arc, this is called the mass of the branch. If the mass supported

by an arc is positive it is a strong arc, and if non-positive it is a weak arc. The augmented

network is said to be normalized if and only if all strong arcs are adjacent to the artificial root.

The two main steps of the Lerchs and Grossmann algorithm are to first ‘move toward

feasibility’ and then ‘normalize’ the resulting tree. These two steps are repeated until the move

toward feasibility is no longer possible at which point the ultimate pit is identified. In the linear

programming context the move toward feasibility corresponds to a change of basis on the path

toward primal feasibility. The normalization step is to fix the current iteration when it strays

from dual feasibility [57].

In practice the Lerchs and Grossmann algorithm continuously scans over all of the precedence

arcs and once an arc is identified that has a ‘strong’ tail and a ‘weak’ head it is selected for the

move toward feasibility. In the move toward feasibility the offending precedence arc is added to

the augmented network, which creates a cycle which has to be broken so that the augmented

network can remain a tree. The Lerchs and Grossmann algorithm breaks the cycle by removing

the arc which is adjacent to the artificial root. If, following the introduction of the offending
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precedence arc, there are any arcs which are strong p-arcs that are not adjacent to the artificial

root the normalize procedure must be used to prepare the tree for the next move toward

feasibility.

A strong p-arc in the non-normalized tree is replaced with the artificial arc between the

artificial root and the head of the p-arc. A strong m-arc is replaced with the arc between the

artificial root and the tail of the m-arc. In effect this is to guard against inappropriate allocations

of values between the branches of the tree. For example, a strong p-arc implies that a node

farther along the branch is using its value to pay for blocks that are not within its cone of

extraction. This is avoided by the normalization step as shown in Figure 2.12.
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Figure 2.12 The normalization step in the Lerchs and Grossmann algorithm transforms the non
normalized tree (left) to the normalized tree (right) by replacing any non root adjacent strong
arcs.

The Lerchs and Grossmann algorithm terminates when there are no possible moves toward

feasibility at which point the remaining strong arcs are the smallest maximum valued closure of

the directed network: the ultimate pit. Practically this may require many complete scans over the

entire precedence network, along with many moves toward feasibility and normalization steps.

The performance of the Lerchs and Grossmann algorithm is not very good when the number of

nodes and precedence constraints is large. Heuristic methods, primarily the floating cone method

in the following section, were preferred for many years following 1965 until a strong commercial

implementation of the Lerchs and Grossmann algorithm was developed by Whittle [34]. In recent

years the Pseudoflow algorithm is the fastest approach to the ultimate pit problem.
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2.2.5 Floating Cone Methods

The floating cone method was originally described by Pana in 1965 in the context of

simulating the mining process in order to determine both the ultimate pit limits and the optimal

mining sequence [58, 59]. Pana, and members of the Systems and Data Processing Division at

Kennecott Copper Corporation, developed a system whereby estimated geologic attributes were

transformed into economic block values, coded on punch cards, and the mining sequence was

determined by evaluating many hundreds or thousands of ‘frustums,’ or cones, of material. An

open-pit mine can be thought of as a set of intersecting cones which together define the ultimate

pit limits. Pana described an approach which later became known as the ‘floating cone’ because

of the way one can visualize an inverted cone floating from block to block and either mining that

entire cone or not.

Floating cone algorithms are iterative in nature and work to define the ultimate pit limits by

successively visiting different possible cone bottom locations and deciding to extract that cone

based on the net contained value. That is, if a cone contains blocks that together have a positive

economic value then it is extracted and if non-positive it is left in place. The mining engineer

defines the cones in the same manner as precedence constraints, with the added flexibility that

they can very easily define minimum bottom widths by simply requiring the cone to consist of

multiple blocks at the bottom. Floating cone algorithms terminate once there are no remaining

cones containing a positive value.

The fundamental issue with floating cone methods is that they do not correctly consider the

contribution of multiple cones at one time. This can lead to both overmining: wherein a larger

cone than necessary is mined that includes a subset of material with net non-positive economic

value that does not need to be mined, and undermining: wherein the floating cone method is

unable to identify a situation whereby two or more cones could ‘share’ the cost of extracting

negative valued material and end up net positive [27, 60–62].

The example in Figure 2.13 demonstrates both overmining and undermining, on the left and

right respectively. The true ultimate pit in both models (hatched section) has a value of 2 and

relies on sharing the top middle waste block between the two ore blocks. However when the

floating cone algorithm is applied to the model on the left it creates the too large pit that
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incorrectly mines two extra blocks, and when the floating cone algorithm is applied to the model

on the right it is unable to find any economic cone to extract and terminates with the

‘mine-nothing’ solution.
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Figure 2.13 Two issues with the conventional floating cone algorithm. The pit on the left is too
large, and no pit is identified on the right which is too small compared to the optimum ultimate
pit (hatched blocks).

Several authors have worked to address these issues to varying degrees of success. Wright, in

1999, introduced the floating cone II algorithm which was able to outperform the original

approach by varying the float sequence and adjusting the extraction criteria in certain situations

[63]. This was later modified and further developed by Khalokakaie in 2006, Kakaie in 2012,

among many others as recently as 2022 [64–68]. Floating cone methods are inherently heuristic

methods and do not guarantee the optimal ultimate pit limits in all scenarios, however their

strength comes from the ease with which minimum mining width constraints can be incorporated

and their relative ease of implementation and use. Interestingly with the advent of flow based

techniques, and efficient implementations of exact ultimate pit optimization algorithms, floating

cone methods are often slower than their optimal counterparts when used without any

operational extensions.

2.2.6 The Pseudoflow Algorithm

The pseudoflow algorithm is very similar to the Lerchs and Grossmann algorithm, in that

both algorithms start with a primal infeasible solution and move towards feasibility by

incorporating violated precedence constraints at each iteration [46, 54, 55]. In Chapter 3 a

variation of the pseudoflow algorithm that is customized specifically for the ultimate pit problem

along with relevant implementation details is described. Therefore, this section focuses on some of
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the practical differences between the pseudoflow algorithm and the Lerchs and Grossmann

algorithm instead of the details of the pseudoflow algorithm which are discussed later.

The biggest practical difference between the pseudoflow algorithm and the Lerchs and

Grossmann algorithm is that the pseudoflow algorithm is much faster. A computational

comparison conducted by Hochbaum and Chen in 2000 showed the same model being solved by

the push-relabel algorithm in forty minutes whereas the Lerchs and Grossmann algorithm took

around five and a half hours [69]. Hochbaum indicated in the same paper that the pseudoflow

algorithm, which was in part inspired by this comparison, ran faster than all known

implementations of the push-relabel algorithm. Muir, in 2007, showed how the pseudoflow

algorithm was superior to the Lerchs and Grossmann algorithm in practice [70]. Chandran and

Hochbaum also showed that the pseudoflow algorithm was superior to known implementations of

the push-relabel algorithm [71].

In 2015, a comparison between all three algorithms; the Lerchs and Grossmann algorithm, the

push-relabel algorithm, and the pseudoflow algorithm was conducted [40]. Deutsch et al. showed

for a model with 16 million blocks that pseudoflow could compute identical results in four

seconds, to those by push-relabel in nine seconds, and Lerchs and Grossmann in forty five

minutes. With one particularly egregious dataset, which consisted of a steeply dipping vertical ore

body, the Lerchs and Grossmann algorithm took fifteen hours compared to pseudoflow requiring a

mere nine seconds.

Another practical difference is that the pseudoflow algorithm, which is based on routing units

of flow around a network, is limited to operating with integral economic block values, unlike the

Lerchs and Grossmann algorithm which can use floating point numbers [72]. This is not a

detriment for mining engineers, as fractional economic block values can be multiplied by a large

constant and then rounded to the nearest integer while retaining the same solution. In certain

circumstances there may be a concern for integer overflow within the solution process, but this

implementation detail should be handled by any serious ultimate pit solver.

There are several different variants of the pseudoflow algorithm which control the order in

which nodes are processed and the means by which nodes are labeled. Labeling, which is another

implementation detail responsible for much of the performance improvements relative to the

conventional Lerchs and Grossmann algorithm, is discussed further in the subsequent chapter.
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However the general notion is to assign a monotonically increasing label to nodes that prevents

the algorithm from reprocessing certain nodes until other nodes have been processed. This has the

effect of avoiding certain sequences of merging operations that would require additional iterations

and is one of the key differentiators between the pseudoflow algorithm and the Lerchs and

Grossmann algorithm. Of the lowest-label and highest-label strategies described by Hochbaum in

2001, the highest-label variant generally performs the best on ultimate pit problems [46, 70].

2.2.7 2D Dynamic Programming Algorithm

The two-dimensional ultimate pit algorithm from Lerchs and Grossmann is a dynamic

programming based technique to solve a special case of the ultimate pit problem [20]. The

precedence constraints are restricted to the simple case of requiring each mined block to mine the

block immediately above it and the two blocks above and to the left and right. A dynamic

programming method is characterized with a straightforward data preparation step, a iteration

through the section, and a traceback step. In Section 4.3, a novel extension of this algorithm

which accounts for minimum mining width constraints is developed as a part of this dissertation.

The data preparation step is to construct an initial tableau which converts the economic block

values into a cumulative value model which corresponds to extracting the entire column of

material above each block. This avoids having to recompute these cumulative values over and over

again throughout the process. An example of this data preparation step is shown in Figure 4.8.

The iteration step proceeds down each column individually from left to right keeping the top

row zero, and filling in each cell of a new tableau as the maximum of three previously computed

values corresponding to mining an additional bench downwards, mining straight across and

reducing the depth of the pit by one bench. The entries of this new tableau represent the

maximum possible contributions of the columns to the left and thereby construct the ultimate pit

one column at a time from the left of the section. Traceback information is recorded on a per

block basis indicating which of the three options were the best.

Lerchs and Grossmann describe keeping the top row as zero throughout the entire process and

following the traceback information from the maximum valued block in the first row [20]. This

can present difficulties when there are multiple disparate pits within the cross section, because

there is no means by which value can be transferred between the pits without mining the
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uppermost bench, which generally consists of overburden, and reduces the value. It is therefore

better to only set the leftmost value of the upper air row to zero and use the iteration step mostly

unchanged, allowing the values of the ‘air blocks’ to increase if necessary. Finally, the traceback

step should be initiated from the rightmost block in the air row instead of the maximum valued

block in the first bench. This minor issue in Lerchs and Grossmann’s orignal description was

addressed early on [22, 73], and can also be seen corrected in Section 4.3.

2.2.8 Alternate methods

Zhao and Kim proposed another network theoretic algorithm in 1991 that was purported to

have better performance than the Lerchs and Grossmann algorithm [74]. Their algorithm is of a

similar character and operates with a similar direct network representation of the problem,

however Zhao indicates that the normalization step is avoided by enforcing a different set of

invariants between operations [75].

The original dynamic programming approach from Lerchs and Grossmann was restricted to

two dimensional cross sections of an open-pit mine. Johnson and Sharp, in 1971 showed a possible

means to apply this approach to a three dimensional mine which involved running the algorithm

repeatedly on sections and then smoothing between those sections [73]. This approach found use

as it is substantially less computationally intense than exact approaches. As computers have

become more powerful and faster algorithms are more available a heuristic is no longer applicable

when the optimal answer is known.

Koenigsberg, in 1982, present a three dimensional application of dynamic programming to the

ultimate pit problem [76]. This approach has faced valid criticism for not identifying the optimal

ultimate pit contours due to how it handles precedence constraints and how in certain cases it

creates additional constraints which preclude the true optimal result [77–79]. A proper three

dimensional dynamic programming approach to the ultimate pit problem which flexibly handles

precedence constraints has not been developed.

As previously mentioned in Section 2.2.3 any max-flow/min-cut algorithm would be usable

with the ultimate pit problem. Such as the push-relabel algorithm [52, 53], the Ford-Fulkerson

algorithm [50], the Edmonds-Karp algorithm [80], Dinic’s algorithm [81], and several others

[82–85].
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It is not expected that all max flow techniques will always be faster than the Lerchs and

Grossmann algorithm. In Lerchs and Grossmann’s original paper they specifically mention that

their direct approach is preferred for “obvious reasons,” although they neglect to say what those

reasons are. It is possible that the max flow algorithms available at the time, which have quite

steep memory requirements, were not well suited to the existing computer hardware. Yegulalp

and Aries applied the excess-scaling max flow algorithm from Ahuja and Orlin to the ultimate pit

problem but were unable to solve problems as quickly as the Lerchs and Grossmann

implementation from Whittle [86, 87].

Recently, in 2022, Chen et al. have described an algorithm for determining the maximum flow

in near-linear time which could be the fastest approach yet described [88]. This approach appears

to be quite involved, relying on identifying certain minimum cycles and using custom data

structures. An implementation of Chen’s algorithm does not yet exist however this could be a very

valuable result for large models if the algorithm translates well to existing computer hardware.

2.3 The Block Scheduling Problem

Where the ultimate pit problem is concerned with determining which blocks should be mined

at all, the block scheduling problem is concerned with when those blocks should be mined, and

where they should be routed. With these additional concerns, the dimensionality of the problem

vastly increases which allows practitioners to define additional constraints which more closely

approximate the true open-pit mining process. However, this increased flexibility and accuracy

also increases the problem’s complexity and the required solution time. Block scheduling

problems are more complicated, more specialized, and less tractable than ultimate pit problems.

Overcoming these challenges has received a great deal of academic and commercial effort over

the years. Researchers have evaluated a variety of approaches. In Section 2.3.1 the pushback

approach to block scheduling is discussed. This approach begins with the ultimate pit, and then

calculates a sequence of nested pits through some means, which approximate an extraction

sequence wherein parts of the smallest nested pit are extracted first, followed by the next largest

pit next, and so on until the ultimate pit. Nested pits only consider the time component of the

block scheduling problem, and only indirectly. Integer programming is often employed to properly

handle routing, blending, stockpiling, and more relevant concerns which is discussed in Section
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2.3.2. Finally Section 2.3.3 discussed several other approaches to the block scheduling problem

that do not rely on Integer programming, and instead use heuristics to inform long range open-pit

mine planning.

2.3.1 The Pushback Approach to Block Scheduling

Pushbacks, or phases, are nested pits calculated via the ultimate pit problem and some pit

parameterization method introduced in Section 2.1.4. The central idea is that these pushbacks

approximate an optimal extraction sequence where benches from the smallest pit are generally

extracted before those in subsequent pushbacks.

Using pushbacks to approximate the block scheduling problem first appeared in Lerchs and

Grossmann’s paper which introduced the ultimate pit problem [20]. Lerchs and Grossmann

proposed reducing the block values by a constant, and resolving for the ultimate pit with the

modified block values. This pit will be the same or smaller than the original ultimate pit, and if

smaller it will be smaller such that it tends to prefer the higher valued blocks. By repeating this

process, reducing by even larger constants, an entire series of nested pits can be determined which

Lerchs and Grossmann claimed to maximize the integral of the cash flow curve. One useful way of

thinking about this process is by dualizing a constraint of the form
∑

xXx ≤ T into the objective

where T is some tonnage constraint whose value isn’t important. The dual on this constraint is

exactly the constant that Lerchs and Grossmann use to decrease all of the block values.

Matheron later expanded on the idea of pit parameterization alongside Vallet in the late 70s

[29, 30]. Dağdelen and Francois-Bongarcon used more finely grained variations on the commodity

prices and mining / processing costs [31]. Whittle also developed several approaches to pit

parameterization based on price and cost factors [11]. Meagher, Dimitrakopoulos and Avis review

several of these approaches, and others in a recent review paper [89].

A key feature of pit parameterization is that the pits are nested within one another and do not

overlap. This makes each pit potentially a good candidate to use for downstream pushback design

and can be used to determine rough production schedules or used in more sophisticated block

scheduling algorithms. A disadvantage of pit parameterization is that in some circumstances the

ore body does not lend itself to creating operable pushbacks. For example, a steeply dipping

vertical ore body often generates nested pits that are concentric cones which do not share a
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common wall and do not form an efficient sequence.

Additionally the volumes of the nested pits do not vary linearly with the parameterization

factor which can complicate the pushback selection process1. This typically happens when a large

volume of ore suddenly becomes economic when a certain profit threshold is exceeded.

However the greatest disadvantage of using a pushback generating, or pit parameterization,

approach to block scheduling is that it simply does not adequately address the important

constraints. The nested pits are not guaranteed to form yearly or quarterly production volumes

and do not consider material routing, capacity constraints, blending, or any other relevant

constraint. To address these concerns more sophisticated methods are required.

2.3.2 Block Scheduling with Integer Programming

Johnson developed a full featured formulation for the mine production scheduling problem

that, if solved to optimality, would report an open-pit schedule which maximizes NPV and

addresses the most important scheduling constraints [44]. The model incorporates a cutoff grade

strategy which varies throughout the life of the mine which allows blocks to be routed

appropriately. Much like the ultimate pit problem precedence constraints are considered, but so

too are capacity limitations on the relevant mining processes (for example a mill and leach pad),

and average grade requirements. Johnson’s formulation has provided the basis for many future

efforts.

Two review papers which address production scheduling with integer programming have been

developed by Newman et al., and Fathollahzadeh et al. [5, 42]. The general thrust of research in

this area has been to incorporate additional constraints or to find more tractable means of

obtaining solutions.

All block schedules incorporate time as a dimension into the model, and are used to indicate

when blocks should be mined. Under the NPV objective function model typical in open-pit mine

planning it would be vastly preferable to mine all ore blocks as soon as possible. The constraints

in place to prevent this are capacity constraints on either the total volume of material mined, or

on a per-destination basis. For example, a given mill may only be able to process a few million

tons in any year which is incorporated as a knapsack style constraint into the optimization model.

1A novel dynamic programming based approach to this gap problem is developed in Appendix B

41



Risk constraints are a common addition to mine schedules following Johnson’s seminal work.

Dimitrakopoulos et al. incorporate grade uncertainty and risk into open-pit design by

incorporating additional constraints and considering geostatistical simulation [90–92]. Godoy

presented a multi-stage approach for profitable risk management [93]. Van Dunem incorporated a

form of risk constraints based on limiting the number of blocks mined that are classified as

measured, indicated, or inferred in a given year [94].

Another example of an additional constraint is in mining complexes with both a surface and

underground component. King et al. developed a model which incorporated the

surface-to-underground transition, leaving space for a suitable crown pillar [95]. However, the

model was still very difficult to solve and a linear relaxation approach was used alongside a

rounding heuristic to achieve an integer solution.

Several researchers have worked to relax certain constraints or change the variable types in

order to solve larger models. Gershon allowed for continuous variables in certain parts of the

formulation to allow certain blocks to be mined partially [9].

One method of improving the tractability of the block scheduling problem is to reduce the

number of variables. Several approaches rely on aggregated blocks together into larger groups of

blocks that are considered as one unit [96–98]. These aggregation approaches yield smaller

problems with fewer variables that are easier to solve however the larger aggregated units may

not provide enough granularity to identify the optimal mine design for the original problem.

A useful approach to solving large block scheduling problems is via Lagrangian relaxation,

which is discussed further in Section 2.5.3 and in Chapter 4. This approach was originally

introduced by Dağdelen in the mid 1980s [27]. The value of this approach is that the sub problem

remains a network model which has a useful mathematical structure which can be exploited for

very fast solutions. Several researchers have expanded on Dağdelen’s approach included Tachefine

and Sumois who use an alternative method to obtain the necessary Lagrange multipliers and

Akaike who worked to incorporate stockpiles and a more involved cutoff grade strategy [99, 100].

The Bienstock Zuckerberg algorithm is a very useful column generation approach used for the

block scheduling problem which takes advantage of the large precedence constraint structure and

the handful of knapsack constraints [101, 102]. This algorithm is discussed further in Section

2.5.4. Aras, in 2018, showed in detail how the BZ algorithm could be used for direct block
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scheduling for complex datasets with three destinations: a mill, a leach pad, and a waste dump

[103]. Additionally, Aras incorporated uncertainty and risk into the scheduling process by limiting

the number of blocks that are measured, indicated, or inferred on a per period basis. A novel

integerization method was also developed which achieves a small gap between the integer solution

and the linear relaxation in practice.

2.3.3 Heuristic methods

The number of variables and constraints in the open-pit mine planning process is often too

large for exact methods. The techniques described in the previous section to aggregate variables

and solve relaxed models help to alleviate some of the difficulty, although there has also been

efforts towards using heuristics and other inexact methods that sacrifice an optimality guarantee

to be faster. Several approaches have been developed by Chicoisne et al., Lamghari et al.,

Lambert et al., and others [104–106]. Many of these heuristic methods are discussed further in

Fathollahzadeh et al [42]. Several of these methods use meta-heuristics, of which several are

described in Section 2.5.5.

One distinct advantage of a heuristic approach to open-pit mine design is that it is much

easier to incorporate nonlinear or complicated constraints that cannot be modeled directly with

integer programming, or other exact methods that are more prescriptive. Additionally, heuristics

can be used not only to generate feasible solutions but also to improve existing ones. For

example, the local search heuristic developed by Amaya et al. can take an initial integer feasible

solution and evaluate nearby solutions in order to find a local optimum [107].

2.4 Open-Pit Mine Planning with Operational Constraints

Both the ultimate pit problem and the block scheduling problem do not, in their classical

descriptions, consider operational constraints such as minimum mining width constraints or

minimum pushback width constraints. The ultimate pit problem considers only the barest

minimum of constraints. Straightforward bounds on the variable preclude impossible values and

precedence constraints govern the shape of the ultimate pit to ensure geotechnical stability.

Outside of these considerations there is no prerogative other than to simply maximize the

undiscounted economic value. The block scheduling problem has many constraints but the most
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common formulations are generally concerned with managing blending, plant capacities,

sequencing, and certain economical considerations instead of operational ones.

Many of the researchers that have developed extensions to the ultimate pit problem and block

scheduling problem to handle operational constraints, including minimum mining width

constraints, are discussed in this section.

The very first floating cone methods from Pana and Carlson were able to handle minimum

mining width constraints by restricting the volumes of extraction to consist of several blocks

[58, 59]. Whittle, in 1990, had this to say about floating cone methods:

Apart from being easy to understand and program, the one advantage that the

floating cone method has over other methods is that, if instead of using just one block

the program uses a disk of blocks as its starting point, then this can ensure a

particular minimum mining width at the bottom of the pit [108].

Of course extending the floating cone algorithm to address minimum mining width constraints

does not address the fundamental concerns with floating cone methods described in Section 2.2.5.

Overmining and undermining errors will still occur and may even be exacerbated.

Wharton, in 1997, describe a series of geometric operators on nested pits used to create more

operable designs and assess the impact of minimum mining width on the NPV of long-term

schedules [109]. The original nested pits used as input are calculated with conventional

parametric analysis and the Lerchs Grossmann algorithm using, for example, a mining cost

adjustment factor. The user then specifies a rectangular mining width template and a iterative

procedure is carried out to remove small contiguous blocks, remove protrusions along the outer

pit wall, handle inaccessible blocks, remove small holes, and overall perform some geometric

cleaning. This cleaning is performed based only on the shape of the nested pits and does not

consider block values. Run times and typical block model sizes are not reported, but the

description implies a constant number of linear passes over the model and is likely to be very

quick if programmed efficiently. However, the impact on NPV is substantial. In their case study

NPV decreases between 3 and 22% depending on how aggressive the cleaning is.

An early optimization based approach that was not solely geometric was described by

Dimitrakopoulos in 2004. Dimitrakopoulos et al. develop a “risk-based production-scheduling
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formulation for complex, multielement deposits”, and incorporate specific equipment constraints

and mining sequence feasibility [91] . Their model provides a benefit for mining blocks in the same

period as blocks within their immediate neighborhood, or equivalently a penalty when adjacent

blocks are mined in different periods. This benefit is realized by applying cost coefficients, which

are determined through trial and error, to relevant terms in the objective function and not as

hard constraints. Using cost coefficients allows the user to specify how important mining width

constraints are to them in actual dollar terms, however this is typically not straightforward to

determine a priori and requires iterating on those parameters considering the final results. This

formulation is applied to a model with 2030 blocks and the elapsed time is not reported.

Stone et al. in 2007, describe an in-house optimization tool developed at BHP Billiton called

‘Blasor’ which generates optimized mine schedules [110]. Blasor internally uses CPLEX, a well

known MILP solver developed by IBM, in order to solve specially constructed formulations

accounting for mining, transport, comminution, and market constraints. Minimum mining width

constraints and pushback width constraints are specifically handled by aggregating blocks

together using a ‘proprietary fuzzy clustering algorithm’ and scheduling based on those

operational units. Additionally Blasor provides a graphical tool to allow practitioners to make

manual modifications to incorporate other operational constraints which are difficult to encode

algorithmically. The precise details are unavailable.

In 2008 Zhang introduced a heuristic approach to incorporate minimum mining width

constraints in nested pits similar to Wharton in 1997 [109, 111]. The initial heuristic operator

developed in 2008 applies three geometric operators in an unspecified sequence:

• Removing drop cuts: small contiguous groups of blocks which are smaller than some

constant and are surrounded by later phases or blocks outside of the pit are removed.

• Small wall removal: similar to the drop cut removal step, this operator removes small

contiguous groups that contact blocks from earlier phases.

• Interior minimum mining width enforcement: reassign blocks which do not satisfy a

rectangular mining width template to nearby common phases.
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These operators do not consider economic value and instead aim to make the pit operational

by changing relatively few blocks. It is generally true that changing fewer blocks leads to a

smaller reduction in economic value with most datasets. However, it is possible to construct

counterexamples and a true optimizing approach must not rely on this. The following year Zhang

extended their heuristic cleaning technique with a meta-heuristic that would use the cleaning as a

sub procedure [112]. The working solution is repeatedly modified in a stochastic manner then

made feasible by the cleaning procedure. This new solution would be accepted as the working

solution always if the NPV improves, but also if the NPV reduces with some decreasing

probability. Accepting a ‘worse’ design with some non-zero probability is one of the defining

features of simulated annealing and works to prevent the algorithm from getting stuck in local

optima. Zhang applied their method to two synthetic models of 16,000 and 120,000 blocks

respectively but do not indicate runtime.

Another two optimization formulations for the block scheduling problem with minimum

mining width constraints are given by Pourrahimian in 2009 [113]. Their first formulation

restricts blocks such that they can only be extracted in a given period if a certain number of

nearby blocks are also extracted in that period. This does not explicitly disallow inoperable

configurations of blocks, but it does preclude many common issues (such as single block pit

bottoms). Crucially, because this extra constraint is appended to a full optimization method it

does consider economic block values. The second works by aggregating blocks prior to

optimization which had the added benefit of making the model much smaller and easier to

optimize while handling mining width considerations by design. The authors apply both of their

methods to a single bench of 415 blocks and do not report the total run time.

A sliding time window heuristic method to a variant of the general open-pit block sequencing

problem handling multiple periods and typical resource constraints is given by Cullenbine in 2011

[114]. They additionally incorporated a small operational consideration. Each block in Cullenbine

et al’s model is required to extract the five blocks above in a conventional cross sign configuration

but also required to extract at least one of the neighboring blocks on the same level. This

additional constraint precludes single block pit bottoms, and other locations where a single block

is mined in a period by itself with no nearby support. The largest example considered by

Cullenbine et al. contains 25,620 blocks and achieves an optimality gap of 4.3% in just under
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three hours. However the impact of the operational constraint itself is not the object of this work

and is not isolated.

Pourrahimian and Cullenbine both incorporate the idea of restricting blocks to be mined if

and only if a minimum number of additional blocks within the original block’s neighborhood are

also mined. As the neighborhood grows the minimum number of blocks must also grow, but you

cannot, in general, rule out inoperable configurations with only these kind of constraints.

Additionally, if the minimum number of blocks grows too large relative to the size of the

neighborhood then the constraint is too restrictive, and may lead to poor results.

Instead of incorporating constraints directly into the optimization model Tabesh, in 2014,

suggests clustering blocks together into operable shapes and scheduling on those results [115].

This form of clustering can be guided based on both the perceived performance of the clusters in

downstream scheduling steps and such that they are big enough for operation. Additionally this

form of clustering precludes minimum pushback width violations.

Version 10 of Maptek Vulcan included a tool called the “Automated Pit Designer” which took

pit numbers, from conventional nested pit analysis, and created polygonal designs - without

ramps - satisfying some operational parameters [116]. The help documentation indicates three

operational preprocesses which may be applied to modify the input pit numbers to satisfy mining

width constraints. Two are based on mathematical morphology operators [117], and the third is a

custom geometric operator to ‘snap walls’ together between nested pits. Mathematical

morphology is a useful tool for operational constraints relating to minimum mining width and is

discussed in more detail later, however it is a geometric method and does not consider block

values. These routines operate on a bench by bench basis and do not consider precedence

constraints, as the pit slopes are handled later explicitly in the polygonization process, this allows

them to operate very quickly and have been applied to models with tens of millions of blocks in

seconds. In full disclosure, the author of this dissertation developed this version of the automated

pit designer in version 10 of Maptek Vulcan.

In Figure 2.14 there are three planar sections through an example ultimate pit model to

demonstrate some of the mathematical morphology procedures used in Maptek Vulcan’s

Automated Pit Designer. The first section on the left exhibits several examples of an inoperable

ultimate pit model. There are both missing blocks, which would realistically be mined, and
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isolated blocks which would realistically be either not mined or mined along with their neighbors.

The middle section shows the result following a cleaning operation consisting of a closing of four

blocks and an opening of three blocks, and the right section shows a more extensive cleaning

operation consisting of a closing of seven blocks and opening of seven blocks. In both cases the

actual economic values of the blocks are not considered and although the resulting sections are

now operational, the sacrificed value may be much greater than necessary.

x

y

Not mined
Changed to not mined
Changed to mined
Mined

Figure 2.14 Cleaning an ultimate pit with mathematical morphology as with the Maptek Vulcan
automated pit designer. The initial planar section on the left is moderately cleaned (middle), and
aggressively cleaned (right).

Juarez et al. in 2014, introduce a technique whereby operational constraints are considered

within a broader tree search style heuristic approach to open-pit mine scheduling and phase

design [118]. Their algorithm, and associated implementation, consider minimum mining widths

and minimum pushback widths by only generating designs which satisfy operational constraints in

the tree search. Typical block model sizes and times are not reported.

Bai et al. in 2018, describe a custom mathematical morphology approach to handling

minimum mining width and minimum push-back width constraints that does not explicitly

consider the value of the design changes [119]. Their method goes beyond the basic application of

the standard mathematical morphology operators by considering connected components, carefully
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considering cycling, and accounting for precedence constraints. They report that their methods

are suitable on reasonably small block models, an ultimate pit with 550,000 blocks took 2 hours

to incorporate mining width constraints.

An additional clustering approach is presented by Farmer et al. in 2018 [120]. This approach

is similar to Pourrahimian’s, described earlier in that the blocks are clustered together into larger

operable groups prior to schedule optimization. Specifically Farmer et al. amalgamate the

scheduled blocks using breadth first search, and divide the aggregations into mineable and

non-mineable groups before proceeding. Their specification for minimum mining width is based

on the number of connected blocks in each spatial dimension which corresponds to a rectangular

mining width. They also describe a heuristic post process for smoothing phase designs and

avoiding both minimum mining width and minimum pushback width violations. The method is

applied to two orebodies however the model sizes and achieved runtimes are not reported.

Deutsch, in 2019, introduced a formulation for the ultimate pit problem with a minimum

mining width based on auxiliary variables [121]. These auxiliary variables follow arbitrary mining

width sets such that before any block is mined at least one of its corresponding operable mining

width sets must be completely mined. This formulation is presented as a maximum satisfiability

problem and was only applied to very small 2D examples, on the order of a few thousand blocks.

The two sets of mining width specific constraints in this formulation are appended to a full

optimization approach and guarantee optimal economic results satisfying operational constraints

if ran to completition. The general maximum satisfiability solvers tested did not scale to full size

models however the formulation has merit and is developed further in Chapter 4.

Muir, in 2020, presents a practical method to incorporating minimum mining width

constraints into ultimate pit models and successfully apply it to large models with over 21 million

blocks [122]. Their method involves solving for the ultimate pit, modifying it, and resolving

multiple times - the aforementioned 21 million block model took 10 iterations and achieved a

usable 2x2 mining width satisfying pit in 2 hours and twelve minutes. Muir’s method encodes

known mining width violating patterns along with an ‘appropriate’ action which are then used to

correct pit designs. The process is applicable to large, practical models, and is quite involved.

The main drawbacks of this method are that only 2x2 mining width templates are currently

supported, and there is no guarantee of optimal results.
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A formulation for the geometrically constrained ultimate pit problem also using arbitrary

mining width sets and auxiliary variables was introduced by Nancel in 2021, however they also

consider additional operational constraints [123]. They incorporate specific constraints to disallow

thin connections between adjoining operable zones and to avoid ‘cavities’ or small collections of

unmined blocks contained within the ultimate pit. Nancel et al. 2021 describe approaches to

preprocess the input and show that on a moderately sized block model, on the order of half a

million blocks, preprocessing can reduce the total solution time for the geometrically constrained

ultimate pit problem from just under 20 minutes to just over a minute. Nancel et al. 2021 use

off-the-shelf optimization software, Gurobi in this instance, to solve their ultimate pit and block

scheduling problems.

Yarmuch et al. 2021 consider operational constraints including mining width, block

connectivity, and ramp access by introducing a so called ‘compactness factor’ to the objective

[124]. The compactness factor preferentially guides the optimization model to select blocks which

are close to the designed ramp when optimizing a single pushback. This method is applied to

either very small models, or models which have been made small by aggregating blocks together.

Manual intervention is required to decide on an appropriate compactness factor. They also

consider a ‘closeness factor’ whereby the output of the optimization model is biased to align with

a predefined manual, operable, schedule.

Another paper from Yarmuch et al. solve an open-pit pushback design problem considering

mining width and connectivity [125]. They use rectangular mining width elements and restrict

blocks from being assigned to specific pushbacks similar to [121] and [123]. If a block is assigned

to a pushback, then at least one of the rectangular mining width templates must be assigned to

that pushback and all of the blocks within that pushback must be extracted. Extensive

preprocessing and sliding window approximations are required to reduce the size of the problem.

Their method is applied to small models, on the order of a few tens of thousands of blocks, and

take many hours to achieve results with an optimality gap of around 6%.

2.5 Optimization

The three main components of an optimization problem are the decision variables which

encapsulate the different choices available, the constraints which limit those choices, and the
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objective function which ranks the different possible outcomes. In open-pit mine planning there

are many subproblems which use these components to define optimization models, or

mathematical programs, which can be analyzed to guide decision making in the planning and

operating phases of an open-pit mining project. Fundamentally optimization is applicable to

many different problem domains within engineering, management, and more [126, 127].

This section discusses the necessary background regarding optimization within the field of

operations research which is used in this dissertation to develop tools for open-pit mine design

with operational constraints. Section 2.5.1 describes the processes for developing and applying

optimization models to real world problems. The main limitations of this approach are discussed.

Section 2.5.2 introduces the linear programming paradigm for mathematical optimization which is

an extremely useful approach for problems that are inherently linear, or can be approximated as

such. A relevant approach to solving large linear programming problems, Lagrangian relaxation,

is described in Section 2.5.3 because it is used in the following chapters alongside necessary

modifications and extensions. Finally, Section 2.5.5 describes relevant heuristic approaches which

are useful when exact approaches are too inflexible or too slow.

2.5.1 Solving Problems with Optimization

Within this chapter several decision problems have already been presented such as; which

blocks should be mined and how should those blocks be routed. Or when should different areas of

the deposit be developed in order to maximize net present value while satisfying relevant

environmental and operational constraints. Within these problems there is an element of choice.

There must be some flexibility in what can be done, or how a desired outcome can be achieved,

for optimization to be relevant. The flexibility within the system is always bounded by relevant

constraints which capture the real-world nature of the problem. Additionally, there must be some

means of evaluating different outcomes or decisions.

The process of applying optimization begins with taking the problem and modeling it in some

capacity. The variables, constraints, and objective function are all defined in such a manner to

capture the essence of the problem while considering the tractability and validity of the model.

Tractability is the degree to which the model can practically be solved and the extent to which it

admits necessary analysis. An extremely large model with billions of variables and interrelated
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constraints might be desired to accurately represent the original problem, but if there is no

current technology that can generate a solution then that model is not very tractable, and

therefore not very useful. On the other hand, the validity of a model describes the extent to

which the resulting inferences and conclusions are applicable to the original real world problem.

Simplifications in the modeling process which improve the tractability of a model generally have a

negative effect on that model’s validity, and the trade-off between these two concerns is a

omnipresent dilemma within the modeling process.

The model must then be analyzed in order to draw necessary conclusions. Various

technologies, including some discussed in the following sections, and mathematical analyses are

used in order to extract relevant information from the model, such as the optimal decision policy.

The conclusions are derived from the model and not from the original problem, so they may need

to be modified and certainly considered within the context of any concessions taken during the

modeling process before making any final decisions. Additionally, the problem and modeling

process may need to be revisited once the conclusions are reviewed.

It is extremely important to understand the disconnect between the real-world problem and

the mathematical model, which is a fundamental limitation of optimization. For a wide variety of

reasons models can never fully capture every possible outcome and consideration within the real

world. But that does not preclude optimization as a valuable technique in real world scenarios,

because without optimization one would find themselves adrift in an endless sea of possibilities

and concerns with only ‘rules of thumb’ and their ‘best judgment’ to guide them. Even with the

numerous concessions and approximations required, open-pit mine planning benefits from the

judicious application of optimization techniques to guide decision making.

There are many approaches that may be considered to take a mathematical model through to

its conclusions. These approaches can generally be divided into two groups, exact methods that

provide not only an optimal solution but also a certificate which guarantees that it is as good as

possible, and in-exact or heuristic methods which generally provide a good solution but cannot

guarantee optimality. Of the exact methods there are many approaches such as näıve

enumeration, dynamic programming, network methods, linear programming, maximum

satisfiability, and others. Heuristic approaches include a wide range of ad-hoc methods, simulated

annealing, genetic algorithms, tabu search, and others. In the following section several of these
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approaches are considered in detail as they are used in the following chapters to develop high

quality solutions to relevant problems in open-pit mine planning.

2.5.2 Linear Programming

Linear programming is a technique whereby a linear system is analyzed to find a vector which

maximizes (or minimizes) some linear objective function subject to linear equality and inequality

constraints [128–130].

A straightforward linear program expressed in standard form with vector notation is given in

statements 2.10 to 2.12.

maximize cX (2.10)

s.t. AX = b (2.11)

X ≥ 0 (2.12)

In this notation c are the objective function coefficients, X are the decision variables, A is the

i× j matrix, where i is the number of rows (or constraints), and j is the number of columns (or

variables), and b are the righthand side of the constraints. It is possible to switch the sense of the

objective from maximize to minimize, or to change the equalities of constraints from ≤ to ≥ or =

and still remain a linear program. But this format is preferred because it is straightforward to

transform any other formats to this one. For mine planning many problems can be expressed as

linear programs, which is very useful because linear programs are generally quite easy to solve

with the simplex algorithm or interior point methods [126, 129].

Every linear program has an associated dual, which is a closely related linear programming

problem which uses the same parameters. For a linear program in standard form the dual is given

in Equations 2.13 to 2.14.

minimize bV (2.13)

s.t. AT v ≥ c (2.14)

AT is the transpose of the original A matrix and v are the new dual variables, which are

unrestricted when the original constraints are equality constraints. We have already seen the
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application of duality to optimization problems in open-pit mine planning. In Section 2.2.3 the

dual of the ultimate pit problem was used to create an equivalent network flow model.

In many real world applications of linear programming it is desirable to restrict the decision

variables to integer values. This greatly increases the difficulty of the problem because duality is

no longer applicable, and many of the most useful theoretical developments are disrupted. Integer

linear programs (ILPs) are typically solved through a combination of analyzing their linear

relaxations and branch and bound, which is a exponential technique which enumerates many

integer solutions in order to find the best [126].

2.5.3 Lagrangian Relaxation

Lagrangian relaxation is a strategy that can be applied to integer programming problems to

help compute the linear-programming relaxation of very large models more quickly. In some cases

the Lagrangian relaxation can even be used to give a tighter bound than the linear relaxation,

although this is not guaranteed. The results from a Lagrangian relaxation model can also be

rounded to provide an heuristic ILP solution, or used for other purposes.

Lagrangian relaxation relaxes specific constraints from the input model but does not remove

them entirely. Instead, these relaxed constraints are dualized into the objective function and their

violation is penalized by using an appropriate multiplier - called a Lagrange multiplier denoted

with λ. For a particular constraint the new objective will have the new term in Equation 2.15.

...+ λi

bi −∑
j

ai,jXj

+ ... (2.15)

Where λi is the Lagrange multiplier for this constraint, bi is the right hand side of the

constraint, Xj are the variables, and ai,j are the constraint coefficients for each row i and each

column j. The sign of λi is carefully controlled based on the sense of the objective and the

direction of the inequality in the constraint. A constraint of the form σiai,jXj ≤ bi requires a

non-negative (λi ≥ 0) multiplier when maximizing, and non-positive when minimizing. A

constraint of the form σiai,jXj ≥ bi requires a non-positive (λi ≤ 0) multiplier when maximizing,

and non-negative when minimizing. Equality constraints have unrestricted multipliers regardless

of the objective sense.
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There are two important aspects of a Lagrangian relaxation that make it a valid operation.

• Every feasible solution of the original model is feasible within the relaxed model. This is

straightforward to see, because removing constraints will never exclude additional solutions.

• And, the objective value in the relaxed model for every feasible solution must be equal to or

better than the objective function in the full model. This follows because of the sign rules

on the λi multipliers, and how the new terms in the objective are constructed. A solution

which satisfies a constraint will have a term in the objective of the necessary sign. For

example a constraint of the form
∑

j ai,jXj ≤ bi when maximizing, will have a term that is

of the form λi

(
bi −

∑
j
ai,jXj

)
where lambdai is non negative and, because the constraint

is satisfied,

(
bi −

∑
j
ai,jXj

)
will be non-negative.

The primary goal when using Lagrangian relaxation is to determine the best possible bound

on the solution to the original ILP. However, if an optimal solution to the Lagrangian relaxation

is found such that it is feasible for the full model and either all multipliers are zero or the

constraint is satisfied at equality - the solution satisfies complementary slackness - it is optimal in

the full model.

In some cases, the solution to the Lagrangian relaxation will be a tighter bound on the integer

solution than the straightforward linear relaxation. However this is not guaranteed. If the

constraints which were chosen to dualize in the Lagrangian relaxation admit too easy of a model,

that is, one that can be solved by linear programming alone, then the bound will not be improved

[126]. The Lagrangian relaxation guided solver in Section 4.4.6 must contend with this fact.

Additionally there is a practical challenge which arises when using Lagrangian relaxation. The

values of the multipliers must be determined through some means, which can be difficult. It is

often possible to ascertain how to improve the multipliers after a solution is determined, and

potentially when improvement is unlikely which can inform when to stop. A popular method of

determining Lagrangian multipliers is by subgradient search. In this method the full collection of

Lagrange multipliers is updated at each iteration by using a step size and the subgradient which

is computed by looking at the previous solution’s relaxed constraints. That is, the new multipliers

are given in Equation 2.16.
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λt+1
i ← λti + stδλ (2.16)

Where λti is the multiplier for constraint i for iteration t, st is the step size for iteration t, and

δλ follows in Equation 2.17. The step size, st, is a matter for some flexibility as well. But it is

known that a step size which converges to zero, when the sum of all step sizes does not, will

converge [126].

δλ← (b−AXt)

||b−AXt|| (2.17)

Where b is the vector of right hand sides to the dualized constraints, A is the constraint

coefficients, and Xt are the variable values as calculated for the current iterations solution. All λ

values may need to be projected in order to satisfy the necessary sign conventions as discussed

earlier. If an optimal solution is found that satisfies complementary slackness we can terminate

with the optimal answer. However if this fortunate scenario does not occur, then the best solution

and the current bound can be reported once the step size has reached a very small number or

whenever further computation does not seem justified.

2.5.4 The Bienstock-Zuckerberg algorithm

The Bienstock-Zuckerberg algorithm (BZ) was first discussed in Section 2.3.2, where it has, in

recent years, seen use for solving specific instances of the open-pit block scheduling problem. At

its core BZ is an extension of the column generation approach to solving linear programming

problems [101, 102]. Bienstock has colloquially referred to the approach as “Column generation

on steroids”.

Column generation is an approach where the large scale linear program is decomposed into a

master problem and sub-problem. Column generation is primarily useful where the optimization

needs to address combinatorially many decision options that can be re-expressed as columns

(variables representing full solutions) in a partial master problem [126]. This partial master

problem considers the few columns currently available in order to inform a column generating sub

problem about which additional columns may be necessary in order to improve the objective. The

duals from the solution to the partial master are used to inform the column generating procedure,
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which in the presence of complicating side constraints may be a heuristic. If there is no way to

construct attractive new columns then the model terminates with an optimal, or near-optimal,

solution to the original problem.

The BZ algorithm deviates from the conventional column generation procedure in two ways.

The first is to require the columns to always contain the optimal solution of the master problem

in the previous iteration, which is used at times during the algorithm to prevent the number of

columns from getting too large. The second is to construct the columns as orthogonal 0-1 vectors.

Orthogonal means that for each variable in the full master problem it obtains the value of one in

exactly one column and no others.

The BZ algorithm is most applicable to problems where there is a large submatrix consisting

of Xi ≤ Xj constraints which can be solved with a network flow procedure, and fewer knapsack

constraints which are of the form:
∑

iXi ≤ y. The precedence constraints are placed in the

column generating subproblem, and both the precedence constraints and knapsacks are retained

in the master.

2.5.5 Heuristic Optimization

Linear programming, and other similar techniques, can admit exact solutions to a given

optimization model which are provably as good, or better, than any other possible solution in

terms of objective function value. A heuristic is an approach that admits a feasible solution, in

that it satisfies all necessary constraints, and generally tries to achieve as good a solution as

possible but it is not guaranteed to obtain the exact optimum. In general exact approaches are

much more satisfying and are preferred. If one is comfortable with the model they have developed

and any assumptions therein, the exact optimal result is going to give the best feasible solution

alongside a certificate that no other solution is going to be better. However this may not be

possible for large models which cannot easily be made smaller without sacrificing model validity.

In these instances a heuristic approach to optimization, either ad-hoc or following an

established meta-heuristic methodology may be appropriate. Additionally, often the losses from

settling for a heuristic instead of the exact optimal result will not exceed the losses and variations

from the concessions taken in the modeling processes or variations and uncertainties present in

the input data or parameters [126]. An exact optimal solution to a shaky model with uncertain
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data that takes several days to compute is not that much better than a 99% solution computed in

a few minutes in most applications. Therefore, just as optimization in general must be applied

judiciously with adequate understanding of any limitations so too must the solution methodology,

exact or heuristic, be selected with understanding of the relevant trade-offs.

Ad-hoc heuristic methods are customized specifically for a particular real world problem and

optimization model. They are developed and implemented independently for a particular problem

with a narrow range of input differences. An ad-hoc approach can take advantage of specific

problem attributes that may admit generating feasible solutions or improving solutions efficiently.

They may incorporate more general approaches such as greedily selecting the current best known

value for a particular variable or performing a basic local search that explores ‘nearby’ feasible

solutions before selecting the best outcome. However, they will always only be usable for the

problem for which they were designed, and although they admit high quality solutions for a

specific problem they can be difficult and costly to implement.

Meta-heuristic approaches instead rely on some higher level strategy, which may have been

inspired by some natural process or at least guided by some high level understanding of

optimization. Most meta-heuristics, and most ad-hoc approaches, fall under the general paradigm

of generating or searching through many feasible solutions and selecting the best solution as the

final answer. Where meta-heuristics differ is that they provide a strategy and criteria for guiding

that search to be as effective as possible.

Simulated annealing is a meta-heuristic inspired by the natural process of annealing whereby

particles arrange themselves into high strength configurations during a slow cooling process

[126, 131, 132]. The general idea is to take a current solution modify it through some appropriate

means and compute the change in objective value. If the change is an improvement, for example

the objective value increases when maximizing, the change is accepted and incorporated into the

solution for the next iteration. However, if the change would not improve the objective it is only

accepted with some decreasing probability which corresponds with the ‘temperature’ analogue in

the overall process. Incorporating non-improving moves into the optimization process allows for

more solutions to be explored, potentially incorporating solutions that ‘break out’ of local optima.

Genetic algorithms fall within the broader group of evolutionary meta-heuristics which

maintain a larger population of possible solutions and provide operations for combining and
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managing the population [126, 133]. One possible operation for combining two solutions together

is the cross-over which takes parts of each solution to form a new solution. At regular intervals

the population is culled by removing low performing solutions and incorporating other random

solutions.

There are many other metaheuristics, including tabu search, particle swarm optimization, ant

colony optimization, all of which employ different approaches to obtain high quality solutions.

2.6 Discussion

The necessary background on open-pit mine planning, its associated algorithms, and

underlying theory have been introduced in this chapter. This information forms the basis for the

improvements to the pit optimization process (Chapter 3), the developments in including

minimum mining width constraints (Chapter 4), and extending those developments to the direct

block scheduling problem with operational constraints (Chapter 5).
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CHAPTER 3

AN IMPROVED ULTIMATE PIT SOLVER – MINEFLOW

A fundamental component of open-pit mine planning is the ultimate pit problem, where the

undiscounted value of an open-pit is maximized subject to precedence constraints. It is used for

many different purposes, as discussed in Section 2.2, including as a subproblem in the

optimization procedures described in Chapters 4 and 5. In all circumstances it is preferable to

compute the provably optimal results as quickly as possible, and in many circumstances it is

advantageous to be able to modify block values and recompute the ultimate pit without having to

start everything from the beginning. For these reasons, and to facilitate future research efforts in

open-pit mine planning, a fast, extensible, open-source, ultimate pit solver named MineFlow is

developed in this chapter. MineFlow, at its core, is a specialized and customized implementation

of Hochbaum’s pseudoflow algorithm specifically for use with mining problems.

Section 3.1 describes the pseudoflow algorithm in detail and customizes it specifically to the

ultimate pit problem. Hochbaum’s pseudoflow algorithm solves the more general max-flow

min-cut problem and must contend with a few complexities that are not present in the ultimate

pit problem. Removing that unnecessary complexity from the algorithm and taking advantage of

the ultimate pit problem’s special structure allows for a faster implementation. Additionally, this

section describes a novel notation for the pseudoflow algorithm which helps to make it easier to

understand and communicate to new researchers and practitioners.

Section 3.2 expands on several of the important implementation details which serve to make

this implementation much more performant than available alternatives. Specifically the

importance of lazily generating precedence constraints, using the minimum search patterns from

Caccetta and Giannini, and other details are discussed.

Finally, Section 3.3 presents a computational comparison which highlights the tangible

benefits of the theoretical and practical improvements developed in this chapter. This approach

uses less memory and less computer time than currently available commercial implementations of

the pseudoflow algorithm and computes identical results.
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This chapter is adapted, in part, from ‘An Open-Source Program for Efficiently Computing

Ultimate Pit Limits: MineFlow’ by Matthew Deutsch, Dr Kadri Dağdelen, and Dr Thys Johnson

published in March of 2022 during the development of this dissertation [56]. This adaptation is

developed with permission from the licensor: Springer Nature and Natural Resources Research.

The source code for the implementation described in this chapter, approximately 6,000 lines of

C++, is readily available from https://github.com/mineflowcsm/mineflow and is licensed

under the permissive MIT license to facilitate further development and collaboration from both

academic and commercial partners. During the development of this thesis MineFlow has already

been adopted by research groups at commercial mining software companies. In a private

communication to the author, one researcher disclosed that MineFlow was able to solve some of

their problems five times faster than their previous implementation.

3.1 The Pseudoflow Algorithm

The pseudoflow algorithm is a highly performant max-flow min-cut algorithm inspired by the

venerable Lerchs and Grossmann algorithm [46, 54]. The pseudoflow algorithm is of great

practical importance due to its ability to compute ultimate pits very rapidly and is the current

preferred approach for ultimate pit optimization in long range mine design as discussed in section

2.2.6. This increased speed allows companies to decrease turnaround time, avoid expensive

downtime associated with waiting for results to be computed, and opens the door to valuable

analyses which incorporate sensitivity analysis and uncertainty management. Additionally, several

of the approaches described in the following chapters rely on solving multiple ultimate pit

problems to incorporate minimum mining widths and develop high level mine schedules.

Section 3.1.1 reviews the necessary notation and nomenclature regarding the network models

which forms the framework for the pseudoflow algorithm. Sections 3.1.2 to 3.1.7 describe the

algorithm in detail and introduce and illustrate the notation for the pseudoflow algorithm

developed herein. Within these sections any departures from the conventional pseudoflow

algorithm are highlighted, as it is these departures (along with the implementation details

described in Section 3.2) that make this implementation a valuable addition to the mine planning

engineer’s toolkit. Finally relevant literature on the computational complexity of the pseudoflow

algorithm is briefly discussed in Section 3.1.8.
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3.1.1 Network Preliminaries

A network, or graph, is a mathematical structure which models pairwise relationships between

objects. Networks are used to represent things which are both abstract and concrete. Many

problems become simpler when thought of through the lens of networks because turning a real

world problem into a network requires one to think cogently about which of the components of

the problem can be combined and represented as nodes and then how best to model the

relationships between those components with directed or undirected arcs [49].

Arcs are used to represent pairwise relationships between nodes. A directed arc between two

nodes indicates that the arc has a special orientation. The beginning and ending nodes of a

directed arc are called the tail and head respectively. An undirected arc between two nodes does

not have an order and only indicates that a relationship exists between the nodes.

A sequence of arcs traversed in any direction between two different nodes is a path. Paths are

defined such that they only go through nodes and arcs at most once. If a network is constructed

such that any two nodes are connected by exactly one path it is called a tree, an example tree is

shown on the left in Figure 3.1. Often trees have a special node designated the root node from

which there could be many sub trees or branches.

In the ultimate pit problem, blocks are represented as nodes and precedence constraints as

directed arcs. This is a special kind of network called a directed acyclic graph. Acyclic means that

the network does not contain any directed cycles. Acyclicity is inherent in precedence graphs

because each block only depends on blocks that are above them in elevation.

A closure of a directed network is a set of nodes such that there are no arcs with their tails

inside the closure and their heads outside. In the ultimate pit problem all closures of the network

are valid pits because the restriction on directed arcs ensures there are no precedence violations.

An example closure is shown on the right in Figure 3.1. The ultimate pit, therefore, is the

smallest maximum valued closure of the precedence graph.

Networks are used to model many different real-world problems, one of special interest here

are network flow problems. In a network flow each arc has a maximum allowed capacity and an

associated flow. Two special nodes are identified as the source, denoted with a S, and the sink

with a T . Flow originates at the source node and terminates at the sink node. Usually, every
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other node must satisfy a flow-balance constraint which requires that the amount of flow into the

node be equal to the amount of flow leaving. Network models can be used to model fluids in

pipes, power in an electrical grid, traffic on roads, and other similar things [49]. In the context of

ultimate pit analysis the flows on arcs can actually be thought of as flowing money. The flow

corresponds to money moving around and paying for the extraction of necessary blocks. This

analogy is expanded upon and justified in future chapters. A small example network flow model is

shown in Figure 3.2.

a

b

c

undirected
arc

root

a’s
descendants

path from c
to root

closure

directed
arc

tail

head

Figure 3.1 Left: a network which is a tree with associated terminology. Right: a network which is
a directed acyclic graph. Figure adapted with permission from Deutsch, Dağdelen, and Johnson
2022 [56]

In Figure 3.2 the current flow from the source to the sink is four units, however it is possible

to route additional flow through this network. The bolded arcs through the middle of the network

can carry one additional unit of flow, and the path along the top could take an additional two

units. If both paths were saturated the flow for this network would be seven, which is the

maximum flow.

In a network there are many ways to cut the network into two pieces. If the partitions are

organized such that one side contains the source and the other side contains the sink then these

two sets are called an s-t cut. In an arbitrary cut the arcs that cross from one partition to the

other are said to be a part of the cut-set. However, in s-t cuts only arcs going from the source

side to the sink side are included.
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Figure 3.2 An example network flow model. Source S and sink T nodes are labeled. Numbers on
arcs indicate ‘flow’ / ‘capacity’. The bolded arcs show a possible augmenting path. Figure
adapted with permission from Deutsch, Dağdelen, and Johnson 2022 [56]

For the network in Figure 3.2 there are four possible s-t cuts as shown in Figure 3.3. Note

that the cut-set corresponding to cut 4 only consists of two arcs despite appearing to go through

three. This is because the middle arc, from b to a, goes from the sink side to the source side.
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Figure 3.3 The four different possible s-t cuts for the network in Figure 3.2. Numbers on arcs are
the arc’s capacity. The cut-set arcs are bolded and the total cut capacity is shown below each cut.
Figure adapted with permission from Deutsch, Dağdelen, and Johnson 2022 [56]

The capacity of an s-t cut is the sum of the arc’s capacities in its cut-set. The capacity for

each possible cut in Figure 3.3 is given in Table 3.1.

Table 3.1 The source set, sink set, cut-set, and capacity of the four possible cuts for the graph in
Figure 3.2.

S-T cut X X̄ Cut-set Capacity

1 {S} {a, b, T} {(S, a), (S, b)} 9
2 {S, a, b} {T} {(a, T ), (b, T )} 8
3 {S, b} {a, T} {(S, a), (b, T )} 7
4 {S, a} {b, T} {(S, b), (a, T )} 11
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It so happens that the maximum possible flow through a network is equal to the capacity of

the minimum cut. This is formalized in the max-flow min-cut theorem. Intuitively, the arcs in the

cut-set of the minimum cut correspond to the ‘bottle-neck’ of the network flow model. There is

no way to fit more flow through the cut-set without increasing its capacity, and if there was some

other path around the bottle-neck then it would not be a valid s-t cut.

Most formal proofs of this theorem confirm the above intuition by showing that if the max

flow did not equal the minimum cut there would be a contradiction. A very early discussion of

this theorem appears in Ford and Fulkerson 1962 [50].

3.1.2 Pseudoflow Preliminaries

Hochbaum devised the pseudoflow algorithm to solve the general max-flow min-cut problem.

In order to use the pseudoflow algorithm for the ultimate pit problem, the ultimate pit problem

must first be transformed into the source-sink form described in Section 2.2.3. In brief; a directed

arc with capacity equal to the economic block value is connected from the source to each

positive-valued block, and a directed arc with capacity equal to the absolute value of the block’s

economic block value is connected from each negative block to the sink. Finally, arcs with infinite

capacity are connected for every precedence constraint. Applying a suitable max-flow min-cut

algorithm to this network identifies the ultimate pit as the source set.

The pseudoflow algorithm is very similar to the Lerchs and Grossmann algorithm and was, in

part, inspired by it [46]. Both algorithms operate iteratively by selecting a violated precedence

constraint, enforcing it, and then adjusting necessary information for the next iteration. Where

the pseudoflow algorithm deviates from the Lerchs and Grossmann algorithm is that it leverages

the idea of flow instead of mass, it provides some machinery for selecting which precedence

constraint to introduce, and maintains different structures which are easier to update efficiently.

At each iteration the pseudoflow algorithm maintains a pseudoflow on the network and a

special structure called a normalized tree. A pseudoflow is a relaxed flow where nodes are not

required to satisfy the flow balance constraints described in Section 3.1.1. Nodes which have more

inflow than outflow are said to have an excess and nodes with more outflow than inflow have a

deficit.
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The normalized tree is a subset of arcs from the network such that there is exactly one unique

path from each node to either the source or the sink node. The tree remains a tree for the entire

algorithm so any changes to the tree require adding and dropping arcs simultaneously.

‘Normalized,’ in this context, requires that only nodes which are immediately adjacent to the

source or sink nodes are permitted to carry excesses or deficits.

Here a departure from the conventional description of the pseudoflow algorithm is taken

regarding the so called main root of the normalized tree and the source and sink nodes.

Hochbaum often combines the source and sink nodes into a single node called the main root,

whereas here they are left separate as two distinct S and T nodes. This is done for several

reasons. Firstly, it reinforces the max flow nature of the problem where one can imagine flow, in

this case ‘money’ or ‘value’, traveling from the source to the sink. Secondly, it is much easier to

draw and keep the arcs associated with positive and negative blocks from crossing and getting in

the way of one another. In most real applications of the ultimate pit problem the negative valued

blocks (waste) are at higher elevations than positive valued blocks (ore), so it is beneficial to

imagine the source at the bottom and the sink at the top. This does have the unfortunate effect

of making the normalized tree appear to be disconnected and not much like a tree, however when

reasoning about the tree either consider both the source or the sink nodes as valid main roots or

imagine an extra tree arc between the source and sink nodes making it a true tree.

The nodes which are immediately adjacent to either the source or the sink are the only nodes

that can have some excess or deficit and are called roots (not to be confused with the main root

terminology used by Hochbaum). Roots with excesses are said to be strong, and all of the nodes

within their respective subtrees are also strong. Roots which satisfies the flow balance constraint,

or ones that have a deficit, are said to be weak, and all of the nodes within their subtrees are also

weak.

Finally each node in the pseudoflow algorithm has an associated label which is a non negative

integer used to preclude certain sequences of merging operations that can negatively impact

performance. Labeling is not strictly necessary for the operation or correctness of the pseudoflow

algorithm but was included as a performance optimization. Therefore labels are not included in

the notation nor the algorithm description in Sections 3.1.3 to 3.1.5, but are discussed separately

in Section 3.1.7.
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3.1.3 Pseudoflow Notation

Figure 3.4 introduces the new notation developed for the pseudoflow algorithm. This notation

makes it far easier to understand how the pseudoflow algorithm operates and keep track of

progress when completing iterations by hand. It is true that experienced practitioners will

generally not perform pseudoflow steps manually and this notation will never be applied to

problems that are even approaching a realistic size. However, similar to the way that the tableau

method is useful to novice researchers learning about the simplex algorithm, this notation is

useful to novice researchers learning about the pseudoflow algorithm.

On the left in Figure 3.4 the numbers on arcs are the current flow of the arc. If the arc does

not have a number, then the flow is zero. The numbers inside nodes are the current excesses

(when positive) and deficits (when negatives). If a number is omitted inside a node then it is zero

and this means that the node satisfies the flow balance constraint.

In this notation the capacity is not indicated on any arc. This is because the capacities of all

precedence arcs, arcs which do not connect to either the source or the sink, are infinity. And the

flow along the value arcs, arcs which are connected to either the source or the sink, are always

kept at their maximum capacity.

S

5 -2 -3

T

7 2 1

7 3

2 2 2 4

flow

excess deficit

S

T

tree arc

strong root

strong node weak node

weak root

Figure 3.4 Left: The maintained pseudoflow on the flow network is notated with numbers on arcs
for the flow, and numbers within nodes for excesses or deficits. Right: Thick arcs are a part of the
normalized tree, and dotted arcs are not. Gray nodes are strong, white nodes are weak. Figure
adapted with permission from Deutsch, Dağdelen, and Johnson 2022 [56]

This is one of the main departures from the conventional pseudoflow algorithm incorporated

into this description. The conventional approach must keep track of, and continuously check,

capacity information on all arcs because they are generally not the same value nor are they all
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infinite. Additionally, in the conventional pseudoflow algorithm the flow on source and sink

adjacent arcs is modified during the second stage of the algorithm where the maximum flow is

recovered from the minimum cut - however this is not required. Once the minimum cut is

identified so too is the ultimate pit and no additional work is necessary as the flow values are not

the main goal in this application.

The normalized tree is notated by making its member arcs bold, and the arcs which are not a

part of the normalized tree dotted or dashed. This is shown on the right in Figure 3.4. Nodes

which are roots are notated with a double circle and contain either an excess or a deficit. Strong

nodes are shaded gray and weak nodes are left unshaded. These two pieces of notation are then

superimposed on top of one another during the execution of the algorithm.

3.1.4 Initialization

The first step in the pseudoflow algorithm is to construct an initial normalized tree and an

initial pseudoflow. It is possible to start the pseudoflow algorithm from any normalized tree with

a valid pseudoflow, but the simplest starting point is to fully saturate all source and sink adjacent

arcs, and include all source and sink adjacent arcs in the normalized tree as in Figure 3.5. This

creates an excess on each positive valued block, and a deficit on each negative valued block.
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c d e f

T

7 3

2 2 2 4

Figure 3.5 Left: The input ultimate pit problem. Right: The initial normalized tree, letters near
nodes are the node names and not a part of the notation.

The slight modification to how capacity is handled in this implementation requires the

pseudoflow to be initialized with maximum flow on the source and sink adjacent arcs. The nodes

must also be initialized with a valid label, it is sufficient to set the label of the strong nodes to one

and the label of the weak nodes to zero.
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3.1.5 Algorithm Steps

At each iteration of the pseudoflow algorithm an arc corresponding to a precedence constraint

between a strong node and a weak node is selected to be the merger arc. This merger arc is then

introduced into the normalized tree and the arc between the strong root and the source or sink is

removed. The pseudoflow is then adjusted so that the tree remains normalized. This requires

adjusting flows along the path from the strong root to the week root, and is called a merge.

During this merging process there may be tree arcs which must be removed from the normalized

tree resulting in new branches with new associated roots which is called a split. Finally, when

there are no more precedence arcs between strong and weak nodes the algorithm terminates and

all the remaining strong nodes constitutes the ultimate pit.

There is no need to continue with the flow recovery step present in the original pseudoflow

algorithm, because the ultimate pit is the sole goal of this approach. Recovering the max flow also

does not have any side effects which could aid in re-initialization or solving similar problems.

In practice choosing which merger arc to use has a large impact on the performance of the

algorithm. The pseudoflow algorithm uses a labeling scheme, discussed further in Section 3.1.7.

These labels help guarantee reasonable performance and avoid several of the problems which

plague the Lerchs and Grossmann algorithm. In this section, however, the labels are not used so

that the small example demonstrates all of the necessary components of the pseudoflow algorithm.

Once the appropriate merger arc is chosen the algorithm identifies the strong root associated

with the underlying strong node, and the weak root with the overlying weak node. The strong

root will, by definition, have some positive excess. The normalized tree must then be updates as

in Algorithm 2.

One of the departures from the conventional pseudoflow algorithm occurs during the walk

from the strong root to the weak root. If the arc is directed in line with this path the flow along

the arc must be increased by the current δ which intuitively corresponds to using currently

available funds to pay for overlying negative valued blocks. These funds will then be ‘spent’ by

the negative valued blocks by directing flow to the sink. In the more general case it would be

necessary to ensure that this increase in flow does not lead to a capacity violation, however in the

context of solving solely for the ultimate pit this check is not necessary because all of these arcs
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Algorithm 2: The merge procedure in the modified pseudoflow algorithm, adapted from
Hochbaum 2001 [46]

// Update the normalized tree

Remove the tree arc connected to the strong root;
Add the merger arc;
δ ← the excess of the strong root
for all of the arcs along the path from the strong root to the weak root do

if the arc is directed in line with the path then
Increase the flow on the arc by δ;

else
// Try to decrease the flow on the arc by δ
if the flow is greater than δ then

Set the flow the current flow less δ;
else

Split flow on this arc;
// See following Algorithm for details on splitting

are precedence constraints with infinite capacity.

During the merge operation if an arc is oriented opposite to the direction of the path from the

strong root to the weak root and the current flow on that arc is less than the currently available

excess, δ, a split is required. If this happens it means that at some stage earlier in the algorithm a

strong root became weak after supporting some of the nodes within the current strong root’s cone

of influence. Therefore the weak nodes which are currently being merged with the current strong

root had, at one point, an underlying positive block supporting them and they may be connected

inappropriately for this new step. The tree must be split into two subtrees at this location so that

we avoid configurations where unnecessary negative valued blocks are included in a strong

subtree. This allows for the two valid outcomes: the subtree remains weak and is correctly

excluded from the ultimate pit, or the positive values blocks within the subtree are sufficient to

support the negative valued blocks above them with the new ‘help’ following the merge.

At later stages of the algorithm, after many merge operations, there may be several splitting

operations during the course of a single merge operation. The splitting operation follows in

Algorithm 3.

When there are no longer any precedence arcs between strong nodes and weak nodes the

algorithm terminates. Any nodes which are still classified as strong are then the ultimate pit, and

the sum of their excesses is the ultimate pit value.
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Algorithm 3: The split procedure in the modified pseudoflow algorithm, adapted from
Hochbaum 2001 [46]

δ ← the flow along the splitting arc ;
The flow along the splitting arc ← 0;
// Note that this leaves a positive excess at the head node

// Update the normalized tree

Remove the split arc;
Add the arc from the head node to the root;

Continue with the merging operation using the new δ;

3.1.6 Example

This example serves to illustrate both the algorithm and the notation developed herein. The

dataset for the example is very small, consisting of only six blocks. In order to force a splitting

operation a specific sequence of merge steps are required as shown on the left in Figure 3.6.
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Figure 3.6 Left: The starting network, circled numbers on nodes indicate the order of merging
arcs in this example. Right: The result of the first merge between nodes b and e. Figure adapted
with permission from Deutsch, Dağdelen, and Johnson 2022 [56]

The result of the first merge, between b and e, is shown on the right in Figure 3.6. The strong

root, b, remains strong following the first merge and the weak root, e, becomes strong.

The result of the second merge, between b and f , is shown on the left in Figure 3.7. This

merge operation has the consequence of leaving the new root, f , with a deficit which reclassifies

the entire subtree as weak. The third merge, between a and c, and the fourth merge, between a

and d, are similar to the first merge and proceed with no complications. The result is included on

the left in Figure 3.8.
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Figure 3.7 Left: The result of the second merge between nodes b and f . Right: The result of the
third merge between nodes a and c. Figure adapted with permission from Deutsch, Dağdelen, and
Johnson 2022 [56]

The final merge operation between nodes a and e begins by pushing d’s excess along the path

towards the week root. The flow between a and d is reduced by three, the flow between a and e is

increased by three but then there is a problem. The flow between b and e should be reduced by

three (which is the current value of δ), but this would lead to a negative flow which is not allowed.

The flow, therefore, is reduced to zero leaving one unit of excess flow on e and splitting the tree.
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Figure 3.8 Left: The result of the fourth merge between nodes a and d. Right: The result of the
fifth merge between nodes a and e which requires splitting on the arc between b and e. Figure
adapted with permission from Deutsch, Dağdelen, and Johnson 2022 [56]

At this point there are no longer any strong nodes with overlying weak nodes and the

algorithm terminates with the ultimate pit indicated by all remaining strong nodes. The sum of

the excess across all of the strong roots is the value of the ultimate pit.
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3.1.7 Labeling

Hochbaum describes a labeling scheme to improve the performance of the pseudoflow

algorithm. Intuitively, the labeling scheme forces the algorithm to carefully choose the merger arc

at each iteration; avoiding certain sequences of merger arcs which would require more iterations

that necessary. Specifically, the labeling scheme makes it such that the merger arc between nodes

s and w cannot be used again until the labels on both s and w have increased by at least one.

The original labeling scheme in [54] is as follows: All nodes are initially assigned a label of

one. When selecting a merger arc between a strong node s and a weak node w the algorithm must

select an arc such that the label of w is as low as possible. Once the merger arc is selected, the

label of all strong nodes is set to the maximum of its current label and lw + 1. These

straightforward steps are enough to improve both the theoretical complexity of the pseudoflow

algorithm and the practical performance.

One aspect of this labeling scheme which is not ideal is that once a merger arc is selected this

may trigger a relabeling operation across all strong nodes, of which there could be many hundreds

of thousands. This is not strictly necessary. Chandran and Hochbaum [71] provide an alternate

labeling scheme that delays relabeling and improves the computational efficiency. MineFlow uses

the more performant delayed labeling scheme which is also present in Hochbaum’s implementation

which allows for strong nodes to have different labels throughout the execution of the algorithm.

The labeling scheme primarily becomes important in large problems because it can vastly

limit the number of possible merger arcs available at any iteration while simultaneously ensuring

that those merger arcs will have a substantial effect. This is because labeling encourages

connecting strong nodes to weak nodes that haven’t been considered yet. In the conventional

Lerchs and Grossmann algorithm there is no guidance on which precedence constraint should be

considered, so there is no protection from undesirable sequences. Many Lerchs and Grossmann

implementations continuously loop over all precedence constraints testing if they are between a

strong and weak node until a full loop is completed with no changes. Only then is the algorithm

terminated. However, with labeling incorporated this is not necessary and more efficient stopping

criteria are available.
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MineFlow, and Hochbaum’s implementation, divide strong roots into a set of buckets which

are differentiated by their label number. At each step a strong node is selected from the bucket

with the highest label number, and considered for possible merger arcs. It is possible to select a

strong root with the lowest label number instead but experimentally this yields poorer

performance. Once no more strong roots are available the algorithm terminates.

If at any stage during the algorithm a strong root is evaluated and no overlying weak nodes

exist then this strong root and its entire subtree are removed from future consideration. Because

the tree is normalized, and there can be no ‘hanging’ weak nodes either, this is a valid and

important practical optimization.

An example showing how labeling works to preclude undesirable merges is included in

Figure 3.9. The value of block c is reduced from −2 to −4 compared to the example in section

3.1.6 and the sequence of merger arcs is modified as shown on the left. Following the first merge

operation between nodes a and e the labels of a and b are increased to two. The state of the

network after the first three merges is shown on the right in Figure 3.9. At this point nodes a, b, d

and e all have a label of 2 and the only allowed merge is between b and f - because f has the

lowest available label. This merge will lead to the immediate termination of the algorithm as all

blocks will become weak and no strong nodes will remain. If the labeling scheme were not used

then the next merger arc could be between b and e or b and f . Either of these choices would

require several additional iterations before the correct answer is identified.
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Figure 3.9 Left: The modified example with a different sequence of merges as numbers on arcs.
Right: The network after three merges. Labels are given as numbers next to the node names.
Figure adapted with permission from Deutsch, Dağdelen, and Johnson 2022 [56]
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3.1.8 Pseudoflow Complexity

The modifications developed in the preceding sections do not alter the computational

complexity of the pseudoflow algorithm as originally developed by Hochbaum. They do, however,

have an impact on the practical performance (Section 3.3). The computational complexity is

important, as it dictates how the algorithm is expected to behave as the problem size grows. Mine

planning engineers are often using larger and larger block models with more sophisticated

geometrical requirements in order to represent as much of reality as possible in their mine models

and facilitate improved decision making. Therefore, it is useful to understand how the algorithm

might respond to larger models.

Hochbaum, in 2008, showed that the labeling pseudoflow algorithm, with integer block values,

has a complexity of O(mn log n) where m is the number of arcs and n is the number of nodes [54].

The complexity can be improved to O(n3) and even O(nm log n2

m ) by incorporating specific data

structures [55]. Some of these data structures can be tricky to implement in a manner that their

higher constant time requirements are outweighed by their lower computational complexity. The

applicability of these more sophisticated data structures was not evaluated.

3.2 The MineFlow Implementation

MineFlow is implemented as a C++ library which exposes a few straightforward classes for

defining precedence graphs and computing ultimate pit limits with the modified pseudoflow

algorithm. Additionally a very simple command line executable is provided for smaller explicit

datasets, or more simple datasets with regular block models.

There are three main components to an ultimate pit optimizer: The block values, the

precedence constraints, and the solver itself. Each of these components was carefully designed to

obtain the highest degree of performance and lowest memory requirements.

3.2.1 Block Values

The block values used for the ultimate pit problem are calculated from a wide range of input

variables and parameters as in Section 2.1.3.3. In MineFlow this calculation is assumed to have

been done prior to invoking the library or executable and is considered outside of its scope.
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The arithmetic required while solving the ultimate pit problem is very simple; block values are

only added, subtracted, and compared with one another or zero. No multiplication, division, or

other more sophisticated operations are required but a careless implementation can still lead to

issues. The core arithmetic must be precise.

Floating point arithmetic, as typically implemented on modern computers, is inadvisable for

the max flow problem. When using floating point numbers there is the potential for loss of

precision and even entering an infinite loop. A very simple network which exhibits this behavior is

given in Althaus and Mehlhorn 1998 [134]. Additionally, Hochbaum’s original developments

regarding the computational complexity of the generic pseudoflow algorithm rely on integer

capacities to ensure either that the total excess of the strong nodes is strictly reduced or at least

one weak node becomes strong [54]. This is used to show that the algorithm always terminates in

a finite number of steps.

Therefore block values in MineFlow must be provided as integer values. This is not typically a

concern for mining engineers, practitioners, and other end users of the library because input

values can be multiplied by a positive constant and rounded to an integer value. One practical

consideration is that the integer values should not be so large as to potentially lead to overflow.

The default data type for block values in MineFlow is a signed 64 bit integer however the GNU

Multiple Precision Arithmetic Library can also be used [135]. This library provides a datatype

which is an arbitrarily large integer limited only by the computer’s available memory. This

precludes overflow but has a negative impact on performance as each individual operation is

slower.

A fundamental tenet of MineFlow, which is further developed in Section 3.2.2, is to minimize

expending effort on steps which are not necessary. A more conventional ultimate pit optimizer

would generally collect all of the block values, define all of the precedence constraints, and then

begin solving for the ultimate pit. However in most real world datasets only a small fraction of

the block values and precedence constraints are ever used. So it is inefficient to be so pedantic in

the implementation. MineFlow must only know all of the positive valued blocks at the onset of

the optimization procedure as it is only the positive valued blocks, and their antecedents, that

could be included in the final answer.
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The block values are defined as a list of positive block identifiers, their values, and a function

which can be queried for other block values as necessary. This even allows the caller to use

MineFlow in cases where the entire block model is not fully defined and avoid the potential for

inappropriate edge effects when the pit extends beyond the original block model limits. If the

total number of possible blocks is known then it can be provided to MineFlow to avoid having to

use a hash map between block identifiers and nodes within the precedence graph. This can lead

to a decrease in runtime.

3.2.2 Precedence Constraints

Precedence constraints are defined on a per block basis as a list of other block identifiers. It is

very important not to generate all precedence constraints because they are not all necessary and

it wastes a substantial amount of time. In MineFlow precedence constraints are defined via a user

provided callback function that when given a base block identifier returns a, possibly empty, list

of antecedent block identifiers. This allows the solver to only request precedence constraints as

necessary and is responsible for much of the speed improvements in this library over the

commercial implementations which often generate all of the precedence constraints upfront.

Because the solver only considers the user provided block identifiers to define precedence

constraints it naturally supports subblocks or other irregular block models. The only restriction is

that those user provided precedence constraints do not form a cycle. This restriction is not

enforced by the library because it would take extra time to check for cycles and is unlikely to

occur in real applications. The higher level routines which are used to define precedence

constraints will generally prevent cycles.

Users do not expect to provide precedence constraints as lists of other blocks, but instead

prefer to use their geometrical information directly. In practice precedence constraints vary by

both location and direction following geometrical constraints and are often specified by a list of

azimuth slope pairs on a per block basis, Figure 3.10. Many blocks often share the same azimuth

slope pair list because they are considered to be members of the same geotechnical zone. The pit

slope between the given azimuths must be interpolated. MineFlow provides linear and cubic

interpolation for this purpose.
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Figure 3.10 An example slope definition with six azimuth slope pairs. Linear and cubic
interpolation for unspecified directions is shown.

If a slope definition, as a list of azimuth slope pairs, is used with an irregular block model then

the list of antecedent blocks for any given base block is not necessarily easy to determine. Sorting

the block coordinates or using an appropriate acceleration structure, such as an R-tree, may be

appropriate in these circumstances. However, most of the time ultimate pits are calculated using

regular block models and pre-computing the set of antecedent blocks for a given slope definition is

warranted. MineFlow implements the minimum search pattern paradigm from Caccetta and

Giannini, introduced in Section 2.1.3.4.

To define a minimum search pattern the slope definition is required along with the block

dimensions and a maximum offset in the z direction. The routine will then determine the smallest

set of offsets that accurately recreates that slope definition for that block model relying on the

transitive nature of precedence constraints in order to include all necessary blocks.

An example minimum search pattern is included in Figure 3.11. This is a plan view of a

regular block model with cubical blocks where the numbers inside blocks indicate the z offset.

The central square is connected to the five blocks immediately above in a cross pattern, but to

recreate 45° pit slopes it is necessary to include additional blocks at higher elevations. The

important feature of this pattern is that it has the fewest number of blocks possible which

corresponds to far fewer precedence constraints.
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Figure 3.11 An example minimum search pattern for 45° slopes and a maximum vertical offset of
9 blocks. Numbers in cells are the z offset.

Determining the appropriate maximum z offset has historically been a point of concern. If the

maximum offset is too high then there will be more precedence constraints and the optimization

will take longer. However, if the maximum z offset is too low then the precedence constraints will

not be accurately represented in the ultimate pit which could even have safety implications. The

library developed in this chapter takes three steps to address this concern:

• Using a performant pseudoflow based solver with lazily generated precedence constraints and

all the theoretical and practical improvements developed in this chapter makes it so that the

solver is far less sensitive to the number of precedence constraints. Certainly the number of

precedence constraints should be minimized, but solvers with less efficient implementations

will have a multiplicative slowdown as more precedence constraints are used.

• Minimum search patterns also minimizes the impact of a higher maximum z offset. For

example, a 45° minimum search pattern with isometric blocks only includes new precedence

constraints at z offsets of 1, 3, 5, 9, 13, 17, 19, and 25, up to 25. That is, several maximum
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z offsets are ‘free’ because the minimum search pattern does not need any additional blocks

to accurately capture all required blocks.

• And finally a method for evaluating the accuracy of a given precedence pattern for a given

block model is developed.

The accuracy of a given precedence pattern is a measure of how close the pattern comes to

achieving the true set of precedence constraints, and efficiency is a measure of how wasteful the

pattern is. A practitioner must decide on how to trade off computational effort versus accuracy,

and always wants the most efficient precedence pattern. Efficiency, in this context, is already

maximized by virtue of using minimum search patterns, but accuracy requires additional effort to

define and measure. Note that the true set of precedence constraints is determined by simply

connecting the base block to every overlying block that is within the provided slope constraints.

The accuracy of a precedence pattern is dependent on the size of the block model on which it

will be used. Again continuing with the isometric block model and 45° slopes if the number of

benches is unrealistically low then it may be acceptable to connect each base block to only the

five blocks above in a cross pattern, the 1:5 pattern. However, this very quickly becomes

unacceptable as the number of benches increases because when this is extended over several

benches the resulting pit looks comically unrealistic; Figure 3.12.

x

y
z

Figure 3.12 Left: The ‘one-five’ precedence pattern extended 30 blocks vertically. Right: the true
set of antecedent blocks for a single base block
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A numerical method of measuring accuracy is preferred. For this purpose Matthew’s

correlation coefficient is a useful measure [136, 137]. Matthew’s correlation coefficient is defined as

follows in Equation 3.1.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
× 1

2
+

1

2
(3.1)

Where MCC is Matthew’s correlation coefficient and TP , TN , FP , and FN are the counts of

the true positive, true negative, false positive, and false negatives respectively. This quantity

ranges from 0 to 1 with 1 representing perfect agreement between observed and predicted results

and 0 when there is perfect disagreement. This measure is preferred over the more conventional

accuracy measure in many application as the balance ratios of the confusion matrix categories are

taken into account. That is, in our context, the number of true negatives can be very large and

this really shouldn’t be given as much weight as the false negatives or false positives.

To generate the confusion matrix an empty block model of the appropriate size is constructed

and all blocks are classified as true negatives. The lowest central most blocks is identified and

classified as a true positive. From this block the true antecedents are identified by evaluating all

overlying blocks against the given azimuth slope pairs, initially classifying all of these blocks as

false negatives. Then the pattern is repeatedly applied starting from the initial block reclassifying

false negatives as true positives and true negatives as false positives. Finally, the counts of each

type of block are calculated and Matthew’s correlation coefficient is determined.

With this approach it is possible to numerically quantify the impact of a given maximum z

offset for blocks models of a specific size, and also compare the minimum search patterns with the

other precedence patterns. The results of a simple evaluation of this nature is included in

Figure 3.13. This evaluation continues with a regular isometric block model with 45° slopes, and

considers the Knight’s move pattern discussed in Section 2.1.3.4. Along the y axis is the

calculated Matthew’s correlation coefficient for a block model with a given number of benches,

across the x axis of the figure. Each line corresponds to a particular precedence scheme, the

bolded line corresponds to the Knight’s move pattern and the others are all minimum search

patterns of various maximum z offsets.
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Figure 3.13 The slope accuracy of several minimum search patterns when used for block models
with the indicated number of benches.

The performance of the Knight’s move pattern is fundamentally different than the minimum

search patterns because it connects the base block to some blocks with less than 45° slopes. This

causes some false positives whereas the minimum search patterns only ever has false negatives.

Therefore, the minimum search patterns will only ever get worse as the number of benches

increases, although only very slightly.

Most realistic block models have around fifty to seventy benches and the pits very rarely reach

the bottom of the block model. So it seems appropriate to use 17 as a starting max z offset which

connects each base block to 45 overlying blocks, and potentially increase the maximum z offset to

25 (using 61 overlying blocks) in some circumstances.

3.2.3 Pseudoflow Solver

The pseudoflow algorithm as described in Section 3.1.5 translates relatively straightforwardly

into an actual C++ implementation although some care must be taken. There are two main data

types; nodes and arcs, which are stored in two different types of containers called the node pool

and arc pool. The pseudoflow graph itself contains both pools and some bookkeeping information

which keep track of how many nodes exist with a given label and the buckets of strong roots

differentiated by label.
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Each node contains its value, a pointer to the arc which leads towards the source or sink (this

forms the normalized tree), the nodes current label, pointers which form a linked list of

descendants, information regarding that node’s precedence constraints, the original block index,

and a pointer to the original root adjacent arc. This is a relatively large amount of information

for each node so nodes only need to be generated as necessary in order to minimize memory use -

additionally nodes are only ever created during the course of the algorithm (as new antecedents

are required) and not removed. However, during testing it was found that preallocating all of the

nodes had a positive impact on performance despite the higher memory use. This preallocation is

preferred unless the library user desires the lighter implementation.

Arcs contain two pointers to their head and tail (null if this would go to the sink or source

respectively), and the current flow along the arc. The capacity is not included because it is not

necessary. Arcs are kept within a large object pool which also maintains a free list of available

arcs that can be re-used. Arcs are created when merging a weak node with a strong root and

removed during the split procedure.

Beside the node and arc pools the graph maintains the buckets of strong roots as an array of

queues and the label counts within another array. These are relatively small and although vital to

determining the next strong root to process are not hugely important. In general most

components of the pseudoflow solver are kept as simple as possible in order to be as fast as

possible. Facilities are included for reporting various statistics such as the complete elapsed time

and how many merge and split operations occurred.

3.3 Computational Comparison

This chapter has focused on the ideas and implementation details behind an improved

ultimate pit solver that professes to being both correct and more computationally efficient than

commercially available alternatives. This claim must be supported by evidence. Five block

models were collected ranging in size from 374,400 blocks to 16,244,739 blocks and imported into

five different commercial software packages with ultimate pit optimizers. Each problem was also

transformed into the pure max flow format in order to compare with Hochbaum’s original

implementation. In all cases MineFlow computed the ultimate pits in less time.
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For each package and each problem five runs were completed. The solution times reported in

Table 3.2 are given as the average of the middle three times, excluding the fastest and the slowest

in an effort to minimize the effect of other processes. All computations were completed on a

Windows 10 machine with a 3.70GHz Intel Xeon XPU E3-1245 v6 processor with 32 GB of

available RAM. The times were measured as the complete time as reported by the package. This

necessarily includes the time to read the input and write the output which can vary between

packages, especially because most commercial packages use some proprietary binary format for

their block models.

The precise number of mined blocks and total pit value varies by less than 1% between the

commercial packages due to what appears to be discrepancies in exactly how precedence

constraints are handled. The reported number of precedence constraints in the table is the total

number as generated by MineFlow from an exhaustive search across all blocks. All of these

precedence constraints are given to Hochbaum’s pseudo fifo program, because it is a general

utility for solving the max flow min cut problem and does not generate precedence constraints.

Notably package C also computed identical results to MineFlow for all datasets even though it

generated its own precedence constraints. The commercial packages did not report the number of

precedence constraints that they used.

The commercial packages are anonymized to respect the wishes of some of the software

vendors. All five packages use a network flow based implementation however the precise details

are not published or publicly available. One package uses the Push-Relabel algorithm and the

other four report to use some variant of Pseudoflow.

For the smallest dataset MineFlow reports a solution time of zero seconds. This is because the

entire problem solves in less than 500 milliseconds.

The ‘Copper Pipe’ dataset is interesting, because it is the same size as the McLaughlin dataset

(approximately 3 million blocks) but often solves much slower in the commercial packages.

Specifically with package D where the McLaughlin dataset solves in 34 seconds and the Copper

Pipe dataset solves in four minutes and fifty seconds. This dataset, as the name suggests, consists

of a large vertical porphyry which seems to pose problems for many solvers. This is potentially

because many more nodes need to be explored to classify branches as weak compared to other

datasets.
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Table 3.2 The solution times obtained when solving for the ultimate pit for the five different datasets with seven different solvers.
Times are given in seconds as the average middle three of five runs.

Dataset
Name

Mined / Total
Blocks

Precedence
Constraints

Pkg. A Pkg. B Pkg. C Pkg. D Pkg. E pseudo fifo MineFlow

Bauxite 74,412 /
374,400

5,349,104 25 22 4 9 9 3 0

Copper
Study

357,304 /
1,827,500

28,321,632 179 99 14 85 43 15 2

Copper Pipe 198,078 /
2,754,000

43,877,152 399 183 64 290 109 24 3

McLaughlin 345,936 /
2,817,920

44,495,400 243 168 37 34 52 24 3

Gold Vein 602,150 /
16,244,739

264,007,172 721 764 169 752 556 81 9
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3.3.1 MineLib Results

MineLib is a library of eleven publicly available test problem instances for three classical open

pit mining problems including the ultimate pit limit problem [138]. A small wrapper around

MineFlow was developed to adapt the MineLib format and compute the ultimate pit solution

using MineFlow.

The high performance server, isengard, at the Colorado School of Mines was used to solve all

eleven problem instances. The server has 48 Intel(R) Xeon(R) E5-2690 v3 @ 2.60GHz processors

and 377 Gigabytes of RAM, although not all of this computing power was used exclusively for

this comparison. In all instances the results as computed by MineFlow were identical to those

reported by Espinoza et al. The problem instances and elapsed solving time, in milliseconds, are

tabulated in Table 3.3.

Table 3.3 Summary information applying MineFlow to the Minelib ‘upit’ problem instances.

Name Number of
Blocks

Number of Precedence
Constraints

Elapsed solving
time

newman1 1,060 3,922 2ms
zuck small 9,400 145,640 17ms
kd 14,153 219,778 20ms
zuck medium 29,277 1,271,207 95ms
p4hd 40,947 738,609 59ms
marvin 53,271 650,631 18ms
w23 74,260 764,786 106ms
zuck large 96,821 1,053,105 190ms
sm2 99,014 96,642 40ms
mclaughlin limit 112,687 3,035,483 291ms
mclaughlin 2,140,342 73,143,770 489ms

The precedence constraints for the MineLib problem instances are fully specified in a flat text

file and therefore MineFlow is unable to take advantage of its ability to lazily generate precedence

constraints. This does not seem to greatly increase computation time on these smaller problem

instances.

3.4 Discussion

This chapter has focused on the development of a fast, memory efficient, implementation of

Hochbaum’s Pseudoflow algorithm. The algorithm has been slightly specialized for the ultimate
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pit problem; taking advantage of the infinite capacities on precedence arcs and the ability to stop

as soon as the minimum cut is identified. The implementation developed herein is more

performant than the tested currently commercially available implementations.

Additionally this chapter discussed the importance of lazily generating precedence constraints

and placing the responsibility for generating the constraints within the solver itself. Having the

solver ask for precedence constraints as needed, instead of requiring them all up front, is an

important optimization that is responsible for much of the speed improvements.

The notation developed in this chapter may also be used to introduce practitioners to the

pseudoflow algorithm. And the implementation is open source and available with minimal

restrictions for academics and commercial users alike.

Finally a means by which the accuracy of a given precedence arc template can be determined

was developed.
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CHAPTER 4

THE ULTIMATE PIT PROBLEM WITH MINIMUM MINING WIDTH CONSTRAINTS

A series of viable approaches to the ultimate pit problem with minimum mining width

constraints are presented in this chapter. The minimum mining width is a fundamental

operational constraint and is unfortunately commonly left as an afterthought for the design

engineer drafting the polygonal pit designs. Incorporating it directly into the ultimate pit problem

is of utmost importance in ensuring that pit designs accurately reflect how they will eventually be

developed and produced. Disregarding operational constraints early in the mine planning process

leads to overestimating the value of a mineral deposit and can cause costly suboptimal decisions.

Section 4.1 introduces the concept of minimum mining width constraints and addresses two

flawed approaches for incorporating them into open-pit designs. These methods are natural and

easy to conceptualize, but suffer from drawbacks when considered carefully.

Section 4.2 describes the formulation and the framework within which all of the subsequent

approaches are developed. The precise form of minimum mining width constraints considered in

this dissertation is documented along with relevant extensions and modifications.

Section 4.3 is a brief diversion which considers a two-dimensional simplified version of the

ultimate pit problem with minimum mining width constraints and develops an extension to

Lerchs and Grossmann’s original dynamic programming algorithm. This extension incorporates

minimum mining width constraints and addresses a minor error in the original description.

Section 4.4 presents the different solvers which take in an input problem and return a pit that

satisfies minimum mining width constraints. This section describes straightforward solvers which

are geometric, and do not consider economic block values, alongside solvers which are full

optimization based approaches.

Section 4.5 discusses methods to reduce the problem size by identifying both inner and outer

bounding pits. An inner bounding pit serves as a baseline solution with a positive contained value

such that these blocks will be contained within the final pit limits. An outer bounding pit is a set

of blocks that necessarily contains the optimal answer. Practically these methods are important

when full 3D models from real mines are used.
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The methods considered in Section 4.4 vary considerably in terms of solution quality and

required time to compute the solution. Section 4.6 presents a comparison of the methods and

identifies the current best method which is most applicable to large models with dozens of

millions of blocks and hundreds of millions of implicit constraints.

4.1 Minimum Mining Width Preliminaries

Modern open-pit mines are developed using large machinery that require a minimum amount

of operating area to perform their tasks in a safe and effective manner. This operating area

should be incorporated into the design process at an early stage as a constraint so that any

resulting designs are usable with only minor modifications. Ignoring these operational constraints

will necessarily lead to designs which overestimate the value of the deposit and do not provide

adequate information for downstream decision making and design.

There are two natural approaches to incorporating minimum mining width constraints that

are often considered as potential solutions. The most common approach is to ignore minimum

mining width constraints, solve for the ultimate pit, and then modify the result manually.

Another approach is to try to reblock the model to use larger blocks that inherently satisfy the

minimum mining width constraints. Neither of these approaches are ideal.

4.1.1 Manually Enforcing Minimum Mining Width Constraints

Many practitioners faced with creating an open-pit mine design that is operational do not

have the tools to do so directly. However, they generally do have a conventional ultimate pit

optimizer. It is natural to solve for the ultimate pit and then try and manually modify that result

into an operational design.

The most common method of doing this is to display the ultimate pit on planar sections and

then draw polygons around the mined blocks which are of an adequate size. Most CAD packages

have some additional tooling for this purpose and will often add extra elements on screen, such as

a user defined circle with a radius equal to the operating width that follows the cursor. This

process, in cartoon form, can be seen in Figure 4.1.

The bench section displayed in Figure 4.1 is at a low elevation in the ultimate pit, which is

where minimum mining width violations occur. The area currently being contoured on the left
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side of the figure is of sufficient size so very few modifications are necessary, however the northern

collection of blocks is likely to be excluded from the manually cleaned design regardless if that is

the correct decision or not. This small spur of blocks could be included in the final design by

mining additional blocks to the east or west, or some combination of expansion or contraction to

achieve the highest value. Most practitioners manually incorporating minimum mining width

constraints will not evaluate all of the possible alternatives and instead use their best judgment.

Similarly the collection of mined blocks in the north east of the section which currently consists of

three small collections of blocks is problematic. Some of the blocks could be included in a

mineable polygon but it is unclear how best to proceed from only reviewing the display.

x

y

Figure 4.1 Manually contouring a block section. Shaded blocks are included in the ultimate pit.

Many open-pit designers will lean towards removing unmineable collections of blocks instead

of incorporating additional waste. This is because when that freshly included waste is near the

bottom of the pit it will often require extracting more waste higher up due to precedence

constraints. However those blocks which are mined at the bottom of the pit are exactly the

positive blocks which pay for the blocks above them. Excluding them will necessarily reduce

profit which may have been better used to pay for additional waste blocks. Removing unmineable

blocks at the bottom of the pit is not always the wrong thing to do. However, trying to

incorporate minimum mining width constraints manually is unlikely to yield the optimal result.
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Another issue with manually enforcing minimum mining width constraints is that it is very

easy to miss non-obvious improvements to contained value. The example two-dimensional

ultimate pit model with a two block minimum mining width in Figure 4.7 demonstrates this issue.

In this example a practitioner might remove the lowest block (of value three) to satisfy a two

block minimum mining width constraint, but this is overly conservative and misses out on

expanding the pit at a higher elevation towards the right-hand side of the section. By expanding

the pit an additional block, of value two, near the top right can also be mined for profit and help

pay for the mining width. In realistic 3D models these sorts of possibilities for recouping value

used to enforce minimum mining width constraints will almost certainly be missed unless more

formal optimization methods are used.

Finally, this manual process takes a long time and must be repeated for each and every pit

that is to be evaluated. If a series of calculated pits are to be used in the context of uncertainty

analysis or as a part of a sensitivity study this manual process is unusable. A computerized

optimization approach to enforcing minimum mining width constraints is desired.

One advantage of enforcing minimum mining width constraints manually is that the process

can be combined with enforcing several other objectives that are hard to quantify or hard to

model. An open-pit mine design is not complete without incorporating bench access into the

design by adding necessary ramps and access roads. Additionally other operational or geometrical

constraints might be challenging to capture in the optimization model but straight forward to

incorporate by an experienced designer. In these situations enforcing minimum mining width

constraints might be one of a myriad of other manual constraints that must be considered, and

when considered in conjunction with these other objectives might not be a great concern.

However, Even in these circumstances having minimum mining width constraints already satisfied

will necessarily improve the subsequent manual design process.

4.1.2 Re-blocking

Block models, as discussed in Section 2.1.3.1, are the primary means of modeling open-pit

mine designs and form the basis for the ultimate pit problem with or without minimum mining

width constraints. Geologists, geotechnical engineers, and mining engineers will generally work

together to balance the block sizes in order to accurately represent the deposit geology and
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facilitate open-pit mine planning. These block sizes are invariably smaller than the required

operating width, which can be quite large, and when solving with conventional methods that

consider each block independently; the results will not satisfy minimum mining width constraints.

A natural suggestion for addressing this issue is to use larger blocks that, when mined

independently, would form an operational design.

These larger blocks could be used by the geologists and geostatisticians in the earlier modeling

phase as well, however due to volume variance and dilution concerns this might not be desired.

An alternative is to take the block model with smaller blocks and re-block it to a model with

larger blocks that combines blocks together using the appropriate means. In a re-blocking

procedure the economic block value variables should generally be summed together to form the

larger block, whereas any grade variables may need to be averaged. However there are several

downsides to using a re-blocked model.

Minimum mining width constraints are planar in nature and rely on ensuring that equipment

and operations have enough space laterally to perform their tasks. There is no vertical component

to a minimum mining width constraint, but re-blocking an input block model to contain blocks

that are laterally expansive but still only as tall as the bench height will cause two problems.

First it is very difficult to correctly represent precedence constraints on blocks that have abnormal

aspect ratios. A bench may be 10 to 20 meters tall, but a typical operating width could be on the

order of 50 meters. While it is possible to create precedence constraints between blocks of this

shape, recreating the usual pit slopes of 40-50 degrees will not lead to desirable pits. Base blocks

will be connected to blocks that are immediately above them, but blocks that are offset in the x

and y directions can only be included after several benches without enforcing pit slopes that are

far too shallow.

Additionally, it is not clear exactly where to start the re-blocking in order to achieve the best

result. There is no innate reason to start re-blocking from the frontmost, leftmost block, and this

may not be the best location. A different origin for the re-blocked model might lead to a better

result, and this choice should be evaluated. In computing the term ‘aliasing’ is often used to

describe the jagged appearance of curved or diagonal lines on low-resolution displays which is

similar to this problem.
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Re-blocking to blocks that are larger than the bench height in the z direction is possible and

somewhat avoids the issue with representing precedence constraints. However the aliasing issues

remain, but now increased to the z dimension. Finally, block models with larger blocks can

incorporate undesirable dilution, and are limited to rectangular operating areas.

If at all possible it is better to avoid re-blocking to satisfy operational constraints. An

approach that instead enforces small collection of blocks in operational shapes is preferred. In this

fashion precedence constraints remain unchanged, there is no unnecessary dilution, and the

operating areas can be constructed in the most appropriate shape for any given mine.

4.2 The Ultimate Pit Problem with Minimum Mining Width Constraints

A suitable formulation of the ultimate pit problem with minimum mining width constraints

must satisfy three required criteria. These criteria are:

1. The minimum mining width constraints must not interfere with the aims of the original

ultimate pit optimization. The results must still satisfy precedence constraints and must

still maximize the total value of the mined blocks.

2. The minimum mining width constraints must adequately capture and model the real world

concept of ensuring adequate operating area for heavy machinery in all areas of the open-pit

mine. They should be flexible enough to accommodate the typical operating widths that are

encountered in real world problems.

3. And finally, the minimum mining width constraints must be suitable for problems that are

of a real world size. That is, they should be applicable to situations where the total number

of blocks is in the tens or even hundreds of millions and there may be hundreds of millions of

precedence constraints, and now hundreds of millions of minimum mining width constraints.

These criteria guide the formulation towards being as simple as possible and to being an

extension to the original ultimate pit problem. The main formulation in this chapter is the

maximum satisfiability formulation in Deutsch 2019 [121], but is presented as an integer

programming problem in order to facilitate certain extensions and several of the solution methods

in the subsequent sections.
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The main idea is to represent minimum mining width constraints as arbitrary sets of blocks

that when mined together form a valid operational area. This allows for complete flexibility in

specifying operational areas, that can even vary throughout the mined area. Additionally, as

these mining width sets are generally of a very similar form they can be defined implicitly, and do

not need to be explicitly generated. This is similar to how precedence constraints are handled.

Typical operational areas consist of small contiguous collections of blocks. It is generally more

efficient to specify minimum mining width constraints with a ‘template’ of blocks instead of on an

individual per-block basis. Several example templates are shown in Figure 4.2. These templates

collect several blocks in the x and y dimensions of the block model into small mineable groups

that, when all mined together, represent a valid operational area.

More suitable Less suitable
x

y

Figure 4.2 Example minimum mining width constraint templates

As indicated in Figure 4.2 the templates corresponding to smaller operational areas are

generally more suitable. This is because incorporating minimum mining width constraints has a

substantial impact on runtime. Larger mining width sets, on the order of 50 or more blocks per

set, are more difficult to satisfy and should generally be avoided. This is still in keeping with the

third original criteria, as most open-pit mines use blocks of a middling size - for example a mine

modeled with 10 by 10 meter blocks may have an associated operating area diameter of 40 or 50

meters. The theory and algorithms developed herein do not enforce any arbitrary limit though,

this is primarily a practical consideration.

Figure 4.3 shows two ultimate pit limits. The pit on the left is the conventional ultimate pit

which does not satisfy minimum mining width constraints. The pit on the right satisfies a roughly

5x5 minimum mining width (the fourth template from the left in Figure 4.2). The outlined areas

are shown in more detail in Figure 4.4.
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x
y

z

Figure 4.3 Left: the original ultimate pit. Right: the ultimate pit calculated with minimum
mining width constraints.

Note that the pits are very similar. This is by design and should always be the case. The

object of this exercise is to reduce the objective function value as little as possible compared to

the original ultimate pit while satisfying operational constraints and removing the need to satisfy

these constraints manually.

x
y

z

Figure 4.4 Inset from Figure 4.3. Left: the original ultimate pit. Right: the ultimate pit
calculated with minimum mining width constraints. Most changes required by the minimum
mining width constraints are at the bottom of the ultimate pit.

The framework of integer programming is used to describe a mathematical formulation for the

ultimate pit problem with minimum mining width constraints in the following section. This

formulation is then considered and extended in the subsequent sections to more closely align with

reality, and to be suitable for solving with large real-world datasets.
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4.2.1 The Main Integer Programming Formulation

The foundational formulation for the ultimate pit problem with minimum mining width

constraints is as follows. Auxiliary variables are used, one for each mining width set, in order to

ensure the resulting ultimate pit is operationally feasible.

Sets:

• b ∈ B, the set of all blocks.

• b̂ ∈ B̂b, the set of antecedent blocks that must be mined if block b is to be mined.

• w ∈ W, the set of all mining widths.

• b̄ ∈ B̄w, the set of blocks that are within mining width w.

• w̄ ∈ W̄b, the set of mining widths of which block b is a member.

Parameters:

• vb, the economic block value of block b.

Variables:

• Xb, 1 if block b is mined, 0 otherwise.

• Mw, 1 if mining width w is satisfied, 0 otherwise.

The Ultimate Pit Problem with Minimum Mining Width Constraints:

maximize
∑
b∈B

vbXb (4.1)

s.t. Xb −Xb̂ ≤ 0 ∀b ∈ B, b̂ ∈ B̂b (4.2)

Mw −Xb̄ ≤ 0 ∀w ∈ W, b̄ ∈ B̄w (4.3)

Xb −
∑

w̄∈W̄b

Mw̄ ≤ 0 ∀b ∈ B (4.4)

0 ≤ Xb,Mw ≤ 1 ∀b ∈ B, ∀w ∈ W (4.5)

Xb integer ∀b ∈ B (4.6)
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Function 4.1 is the objective function which is the same as for the conventional ultimate pit

problem. The aim is to maximize the undiscounted value of the mined blocks. Inequality 4.2

specifies the precedence constraints which are again the same as the conventional ultimate pit

problem. The purpose of these constraints is to enforce geotechnically stable designs and preclude

underground mining.

Inequality 4.3 contains the first set of new constraints, which are called the assignment

constraints. These constraints restrict the value of Mw to be zero for a given width w if not all of

the blocks within that width are mined. That is, Mw can only be one if all of its associated blocks

are also one. By themselves the assignment constraints don’t do anything to modify the results

from the original ultimate pit problem. Inequality 4.4 then specifies the enforcement constraints

which, when combined with the assignment constraints, enforce operational areas in the resulting

pit model. The enforcement constraints are on a per block basis, and are interpreted as: block Xb

can be a one if and only if at least one of its associated auxiliary variables are also one.

Inequality 4.5 precludes unreasonable variable values, and Inequality 4.6 enforces integrality to

prevent partially mining blocks.

4.2.1.1 Mathematical Nature of the Enforcement Constraints

Even with the added complexity of the enforcement constraints (Inequality 4.4) it would be

very convenient if the model retained a nice mathematical structure similar to the original

ultimate pit problem. That is, it would be nice if the constraint matrix were still totally

unimodular or if a network optimization approach was still applicable.

The values within the constraint matrix are contained within {−1, 0, 1}, but even very simple

systems are not totally unimodular. The tiny model with three blocks and three mining widths

illustrated in Figure 4.5 demonstrates this.

The expanded enforcement constraints for this model follow in Inequalities 4.7 to 4.9.

X1 −M1 −M2 ≤ 0 (4.7)

X2 −M1 −M3 ≤ 0 (4.8)

X3 −M2 −M3 ≤ 0 (4.9)
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X1 X2

X3

M1

M2 M3

Figure 4.5 Small example mining width configuration with three variables and three minimum
mining width constraints consisting of two variables each

The submatrix corresponding to the M variables is isolated in Equation 4.10 and has a

determinant of 2.

∣∣∣∣∣∣
−1 −1 0
−1 0 −1
0 −1 −1

∣∣∣∣∣∣ = 2 (4.10)

Thus this formulation does not contain a totally unimodular constraint matrix. The addition

of the enforcement constraints, which are necessary to enforce operational mining areas, has

ruined the nice mathematical structure of the ultimate pit problem and additional effort to

minimize this is warranted.

The enforcement constraints are covering constraints which are essentially toggled on and off

by their associated block variable. In a logical context they can be considered as or constraints,

which is how they were developed in the original maximum satisfiability formulation. The

constraint is satisfied if the block is not mined, Xb ← 0, or one of the associated mining width

auxiliary variables is mined, Mw ← 1.

4.2.1.2 Reducing the Number of Enforcement Constraints and Auxiliary Variables

There are a lot of enforcement constraints. In Inequality 4.4 there is one enforcement

constraint for every block in the original model which is on the order of tens of millions of

constraints for a realistic model. Each of these constraints contains several non zero columns,
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although realistically most models should contain on the order of a few dozen up to maybe fifty.

However, that is still far too many for a conventional solver to handle.

The first simplification is that enforcement constraints and associated minimum mining widths

are only required on positive valued blocks in the original model. Non positive valued blocks are

only mined when a positive block below them is mined. If those positive valued blocks satisfy a

minimum mining width then typically the non positive blocks above them will also.

Finally, the enforcement constraints can be implemented in a deferred or lazy fashion as in a

realistic model there may be on the order of several thousand violating blocks in the ultimate pit

to begin with. Depending on the approach used this can vastly reduce the actual number of

enforcement constraints and auxiliary variables required.

4.2.1.3 Mathematical Nature of the Assignment Constraints

The assignment constraints (Inequality 4.3) are identical to the precedence constraints. These

constraints form a totally unimodular substructure similar to the precedence constraints in the

original ultimate pit problem. In Sections 4.4.6 and 4.4.7 this property is exploited.

4.2.1.4 Alternative Assignment Constraints

During development an alternative version of assignment constraints was considered. This

alternative version is documented in Inequality 4.11 which could be used to replace Inequality 4.3

in the original formulation.

Mw +Xb −
∑

b′∈Bwb′ 6=b

Xb′

|Bw| − 1
≤ 1 ∀w ∈ W, b̄ ∈ B̄w (4.11)

Where |Bw| denotes the number of blocks in mining width set w. One interpretation of this

constraint is that: The only way Mw and Xb are both 1 is if all Xb′ are also 1. This second type

of assignment constraint is more complicated, and requires values in the constraint matrix that

are not in {−1, 0, 1}. There is no change in the number of constraints with this method. There

are more non zeros in the constraint matrix, however the outcome is the same and integer

solutions are identical.

The differences arise when considering a linear relaxation of both types of assignment

constraints. This second form, Inequality 4.11, leads to a looser linear relaxation with a higher
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economic value that is calculated much quicker. In practice a tighter linear relaxation is preferred

during a typical branch and bound approach to solving the integer programming problems, but

the increase in speed can be substantial.

One example problem with 13 million rows and 724 thousand columns contained 38 million

non zero entries with the original formulation, and 185 million non zero entries with this

secondary formulation. The objective value achieved in the linear relaxations was 28.295 million

and 28.417 million respectively. The total time required to achieve these results was 7 hours and

41 minutes with the original formulation compared to 21 minutes with this alternative.

Note that fractional values in the constraint matrix can be avoided by multiplying each

constraint by |Bw| − 1. This is recommended to avoid any numerical instability issues associated

with adding fractions together.

4.2.1.5 Precluding Other Inoperable Block Configurations

This formulation for the ultimate pit problem with minimum mining width constraints does

not preclude all unmineable configurations of blocks. For example the single unmined block on

the left in Figure 4.6, or the non ideal ‘peanut’ combination of two mining widths on the right of

Figure 4.6.

x

y

Figure 4.6 Left: An inoperable configuration of blocks permitted by the original formulation.
Right: Another inoperable configuration

Neither of these block configurations are realistic, and should potentially be excluded from a

truly operational ultimate pit design. One method of excluding these configurations would be to

not only require the mined blocks to satisfy minimum mining widths - but also the unmined
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blocks. This somewhat unconventional approach would require that any unmined blocks are a

part of a suitable collection of other unmined blocks that is large enough.

Another approach would be to add additional constraints on the Mw variables themselves that

preclude certain undesirable configurations. For example two nearby minimum mining width sets

could only be mined if all of the minimum mining width sets between them were also mined.

4.2.1.6 Hierarchical Minimum Mining Width Encoding

Especially with rectangular minimum mining width sets there is a strong element of

self-similarity in this problem. As an example, if a 4× 4 minimum mining width area was desired

for a regular block model this could be encoded hierarchically. Minimum mining width sets could

be constructed as per usual for 2x2 collections of blocks, with each associated auxiliary variable

given four assignment constraints for the four relevant blocks. Then a second layer of minimum

mining width constraints could be defined for 3x3 collections of blocks, that are assigned if the 4

overlapping 2x2 collections of blocks were mined. Finally, a third layer of minimum mining width

constraints for the desired 4× 4 groups of blocks could be assigned in terms of the four contained

3x3 collections of blocks.

In such an encoding there are more auxiliary variables than the conventional formulation,

however for large sections there will be fewer constraints. The number of assignment constraints,

ND, with direct 4× 4 mining width sets is given in Equation 4.12.

ND= (nx − 3)× (ny − 3)× 16 (4.12)

This is for a single bench with nx blocks in the x direction and ny blocks in the y direction.

With the hierarchical encoding the number of assignment constraints, NH, is given in Equation

4.13.

NH= (nx − 1)× (ny − 1)× 4 + (nx − 2)× (ny − 2)× 4 + (nx − 3)× (ny − 3)× 4 (4.13)

In practice the complexity and added auxiliary variables overshadow the very slight reduction

in the number of assignment constraints, and this hierarchical encoding is not currently

recommended.
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4.2.1.7 Computational Complexity

It would be convenient if a polynomial-time algorithm existed for the ultimate pit problem

with minimum mining width constraints similar to the original ultimate pit problem.

Unfortunately, in Appendix A it is shown that any 3-SAT problem can be transformed into the

ultimate pit problem with minimum mining width constraints. This proves that this problem is

NP-complete, and that there is currently no known polynomial-time algorithm for this problem.

4.3 Two-Dimensional Ultimate Pit with Minimum Mining Width Constraints

In this section a brief diversion is made to the two-dimensional ultimate pit problem.

Although not practically useful, the two dimensional ultimate pit problem is a useful teaching

tool and is used to illustrate many of the principles of this fundamental mine planning problem.

Extending this problem, and associated dynamic programming algorithm, to consider minimum

mining width constraints is therefore a valuable exercise.

The two-dimensional ultimate pit problem operates on a single vertical section through a

block model. The block model contains solely economic block value information and has very

simple precedence constraints where each block is only allowed to be mined if the three blocks

above it are also mined. These precedence constraints correspond to a 45° pit slope if the block

sizes in the x and z direction are equivalent, and in general the slope angle is arctan(sz/sx).

Minimum mining width constraints are defined by requiring an integer number of blocks along the

pit bottom. Graphically the two-dimensional ultimate pit problem with minimum mining width

constraints is shown in Figure 4.7. Three different solutions for mining widths of one, two, and

three blocks are shown along with the input data.

An algorithm for solving this simplified two-dimensional problem is developed in this section.

The value of such an algorithm is mostly pedagogical as it cannot be applied to real-world

problems. The algorithm described in this section is a direct extension of the 2D algorithm

introduced by Lerchs and Grossmann in 1965 [20], discussed previously in Section 2.2.7.

Fundamentally the two-dimensional dynamic programming ultimate pit algorithm operates

from left to right and top to bottom along the section calculating for each block the best possible

contribution of all the preceding columns given that the current block is contained within the pit.

At the end of the scan the optimal pit can be extracted by following the traceback information
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from the top right. In this section minimum mining width constraints are incorporated by

disallowing pit bottoms from going back ‘up’ until they have mined the requisite blocks ‘across.’

There is no restriction on mining ‘down’ another bench, except that it resets any progress on

satisfying the minimum mining width.
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-1 -1 -1 -1 -1 -1 2 -1 2 -1
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Figure 4.7 A graphical depiction of the two-dimensional ultimate pit problem with minimum
mining width constraints. The input economic block value section (top left) is shown with three
different solutions with mining widths of size one (the original ultimate pit problem, top right),
two (bottom left), and three (bottom right)

4.3.1 Formal Description

Given a regular 2D economic block value model EBVx,z, where x and z are indices in the X

and Z dimensions x ∈ {0, 1, ..., nx − 1}, z ∈ {0, 1, ..., nz − 1} construct a depth-based cumulative

value model Cx,d, x ∈ {0, 1, ..., nx − 1}, d ∈ {−1, 0, 1, ..., nz − 1} as follows:

Cx,−1 = 0 ∀x ∈ {0, 1, ..., nx} (4.14)

Cx,d =

nz−1−d∑
z=nz−1

EBVx,d ∀x ∈ {0, 1, ..., nx}, d ∈ {0, 1, ..., nz} (4.15)

Equation 4.14 appends the row of air blocks along the ‘top’ of the model which helps facilitate

the traceback step and helps identify the maximum valued pit contour. The row of air blocks is

indexed with a depth of -1. Equation 4.15 fills in the rest of the cumulative value model which
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corresponds to the value of mining the entire column of blocks above each block. This algorithm

uses depth, indexed with d, instead of the z coordinate because this simplifies the description of

the algorithm and is a more efficient memory order in this application. An example input

transformation is shown in Figure 4.8.

x

z -2 -2 -2 2 3 2 -2 -2 -2 -2

-2 -2 -2 1 5 4 -2 -2 -2 -2
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x

d
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-4 -4 -4 -1 3 2 -1 -4 -1 -4

-2 -2 -2 -2 -2 -2 1 -2 1 -2

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 0 0 0 0 0 0 0 0 0

Figure 4.8 Example input transformation from an economic block value model (left) to the
cumulative value model (right). Note the extra row of ‘air’ blocks and the change of indices.

The size of the cumulative value model and the mining width, nw, are then used to define a

3D volume for the dynamic programming iterations denoted Vx,d,w. This volume is indexed with

x ∈ {0, 1, ..., nx − 1} for the x coordinate along the section, d ∈ {−1, 0, 1, ..., nz − 1} for the depth

with −1 being the special row of air, and w ∈ {0, 1, ..., nw − 1}. The w dimension of this volume

serves as a counter which prevents the pit contour from going ‘up’ unless the minimum mining

width requirement is met. A w index of 0 indicates that no blocks have yet been mined

horizontally. Only when w = nw − 1 is the growing pit permitted to go up a bench.

The two starting cases are:

V0,−1,0 = 0 (4.16)

V0,0,0 = C0,0 (4.17)

Where Equation 4.16 corresponds to not mining the first column, and Equation 4.17

corresponds to beginning the pit in the top left and starting to mine immediately. From this point

forward the iteration proceeds down along the depth, d, fastest, then ‘across’ the mining widths

w, and finally along columns x slowest. The special air row is handled as follows:

Vx,−1,0 = max {Vx−1,−1,0, Vx−1,0,nw−1} (4.18)
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Read Equation 4.18 as: the value is the maximum of the value if the pit continues not mining

(Vx−1,−1,0), or if the pit stops mining provided that w is nw − 1. Note that it is important to

handle the air row in this fashion where it is clearly delineated between not mining (value stays

the same), and stopping mining (where the value becomes that of the best pit to the left). This

idea was missed in the original description from Lerchs and Grossmann, without minimum mining

width constraints, and could lead to incorrect results when the dataset consists of two disparate

pits. The main cases are then split between three cases for the different possible values of w.

Vx,d,0 = Cx,d +
w′<nw
max
w′=0

{
Vx−1,d−1,w′

}
d 6= −1 (4.19)

Read Equation 4.19 as we can drop down one bench from any width, provided we reset our

width to zero. This is the only way to go down a bench.

Vx,d,w = Cx,d + Vx−1,d,w−1 w ≥ 1, w < nw − 1 (4.20)

Equation 4.20 simply assigns the value over one block on the same bench and increases the

width counter potentially allowing the pit to go upwards by one bench later via Equation 4.21.

Vx,d,nw−1 = Cx,d + max


Vx−1,d,w−1

Vx−1,d,w

Vx−1,d,w , d < nw − 1
(4.21)

The three cases in Equation 4.21 can be understood as follows:

• Continue mining horizontally along the current bench and ‘finish’ the mining width

constraint.

• Continue mining horizontally along the current bench, even though the mining width has

already been satisfied.

• Decrease the depth of the pit by one bench (by considering the value of the block at d+ 1),

and maintaining the completed mining width constraint.

The approach requires just under nx × (nz + 1)× nw iterations, as some cells of the full

volume are invalid: either because they are unnecessary (for example when d = −1 and w > 0), or

correspond to unreachable blocks (d > (x− w)), and a few other edge cases. Each iteration looks
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at a constant number of previous blocks which is typically less than or equal to three, except

when w = 0 when it is required to look at nw other cells. This requirement to look at nw other

cells when w = 0 does not increase the algorithmic complexity of the algorithm. This implies an

algorithmic complexity of O(nx(nz + 1)nw), essentially O(n3) where n is max {nx, nz + 1, nw}. If

one considers the size of the mining width nw as an input to the problem then the algorithmic

complexity of this approach is technically pseudo-polynomial, as it depends on the value of the

input mining width constraint.

Practically this algorithm has only marginally more value that the original 2D dynamic

programming algorithm discussed in Section 2.2.7. It could ostensibly be applied in the same

manner: on sections of a full 3D block model and subsequently smoothed as described in Johnson,

1971 [73]. Realistically the full 3D approaches described in the subsequent sections are to be

preferred.

4.4 Solution Methods

The primary objective of this chapter is to provide solution strategies which are practical and

applicable to very large block models and realistic datasets. It is insufficient to propose a single

technique or solution methodology and expect it to work well across all possible inputs, or expect

it to perform well in all scenarios. Therefore a wide ensemble of techniques are evaluated.

4.4.1 The Ultimate Pit

One possible strategy is to relax Constraints 4.3 and 4.4 and just solve for the ultimate pit

without any mining width constraints at all. If the resulting pit happens to satisfy the mining

width constraints already, either by mining nothing at all, or because the deposit is tabular in

nature, then no additional work is necessary. The addition of minimum mining width constraints

necessarily reduces the value by excluding certain configurations of blocks, but if those

configurations do not occur then the optimal answer will not change.

The conventional ultimate pit is defined to be the smallest maximum valued closure of the

precedence graph, but there may be larger pits with the same value. One option would be to

compute the largest ultimate pit as well, and see if that one has better luck at satisfying minimum

mining width constraints. The pseudoflow algorithm as implemented in Chapter 3 computes the
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smallest closure, and it is not very straightforward to modify it to compute the largest - unlike in

the Lerchs and Grossmann algorithm where it suffices to modify a few strict inequalities in the

move toward feasibility procedure. One way to compute the largest ultimate pit is as follows:

• Count the number of nonnegative blocks, call this q

• Multiply each block value by q, and if the value is nonnegative add 1.

This procedure amounts to increasing all values by some very small epsilon that is large

enough to mine blocks that were previously zero, but not so large as to change the results. It may

be important to take necessary steps to avoid overflow with this technique as the flow values

become very large. The minimum cut of this modified dataset is then the largest minimum cut of

the original problem.

Of course these approaches are näıve, and are not expected to find the optimal result except in

very unlikely situations. These approaches are excluded from the computational comparison

because they are not guaranteed to generate feasible pits, although the original Ultimate-Pit is

documented for comparison.

4.4.2 Floating ‘Fat’ Cones

The floating cone procedure originally described by Pana in 1965 is easily extended to handle

minimum mining width constraints [58, 108]. The floating cone algorithm was described in

Section 2.2.5.

To contend with minimum mining width constraints one can use the operating width as the

base element of each cone instead of a single block. All minimum mining width sets which contain

a positive valued block are a potential cone bottom and are considered in turn. If the full mining

width set and all of its antecedent blocks have a net positive value they are extracted, and the

floating process is continued. Once all of the mining width sets have been considered the process

is repeated until a full scan is completed with no positive valued cones identified and no change to

the overall pit.

The result necessarily satisfies the minimum mining width constraints - it is the union of

satisfying pits. And the result necessarily has a positive value - only positive valued subsets were

incorporated. However this approach does nothing to address the two fundamental flaws of
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floating cone methods: overmining and undermining. The optimal results are not expected with

this approach even for simple datasets, but it is included in the computational comparison.

One area of latitude within the floating cone algorithm is the order in which the cone bottoms

are considered. For the evaluation the five following orderings were evaluated:

• In the Float-Bottom-Up solver the cone bottoms are sorted, by their coordinates, ascending

through x, y, z.

• In the Float-Top-Down solver the cone bottoms are sorted, by their coordinates, descending

through x, y, z.

• In the Float-Random solver the cone bottoms are shuffled randomly.

• In the Float-Value-Ascending solver the cone bottoms are sorted by their contained

economic value from lowest to highest.

• In the Float-Value-Descending solver the cone bottoms are sorted by their contained

economic value from highest to lowest.

All of the floating cone solvers suffer from poor runtime and are unable to find the optimal

solution in many scenarios. The poor runtime is generally because for each cone bottom a large

portion of the block model has to be scanned, and even if the cone is not removed in the first pass

it will have to be re-examined again if any other cones are removed that may impact it. A lot of

time is wasted checking negative valued cones with many blocks to see if they are still negative.

One minor wrinkle with the ‘value ascending’ and ‘value descending’ solvers is that simply

reordering the cone bottoms by value once at the beginning of each pass is not totally accurate.

When a pit is removed the value of many other cone bottoms may change which invalidates the

initial ordering. One approach is to store the potential cone bottoms in a heap which is sorted by

contained value. As cones are removed any affected cones can have their new value calculated and

pushed into the heap as well. When a cone comes up for possible extraction its value is first

checked if it is current, and only then possibly extracted. In practice this modification is overkill

for a slow, heuristic approach with explicit downsides.
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4.4.3 Geometric Methods

Geometric methods begin with the ultimate pit, and then heuristically work to modify that

pit to satisfy minimum mining width constraints. These methods do not consider the economic

block value of any blocks, and instead are essentially operating with a new objective function that

minimizes the number of blocks changed from the conventional ultimate pit to some new

satisfying pit. The idea being that minimizing the number of blocks changed is a good analogue

for reducing the value as little as possible.

The Subset solver computes the ultimate pit and then creates a new pit consisting of only

those mining widths that were satisfied. As previously mentioned this has the unfortunate

consequence of removing precisely those blocks with a net positive value that support the blocks

above them. However this approach is very straightforward to implement and efficient to

calculate, requiring only a simple linear pass over the end results following pit optimization. In

some respects this approach is similar to the approach adopted by many pit designers faced with

computing a satisfying pit manually.

Similar to how the subset only removes blocks from the ultimate pit in order to create a

feasible solution, the superset solvers only add blocks to the ultimate pit. In this way the ultimate

pit is contained entirely within the final pit. Unlike the subset approach, however, there is no

straightforward way to ensure that the superset pit is as small as possible without resorting to

expensive enumeration or another optimization problem. The Superset-Width solver evaluates

each possible width that could be incorporated into the solution that has at least one block

already mined. Those widths are sorted ascending by how many blocks are required and greedily

incorporated in sequence until the result fully satisfies. Similarly the Superset-Cone solver

performs a similar process but looks not only at the blocks in the width, but counts all of the

blocks in the entire cone of extraction. This takes longer but generally includes fewer blocks.

The next class of geometric solvers are based on ideas borrowed from mathematical

morphology [117]. There are two fundamental operators in mathematical morphology which have

straightforward analogues for this problem.

• Erosion operates by retaining only the blocks of the current solution such that all of the

widths of which they are a member are fully mined. This is essentially a complete
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contraction of the entire pit, even along the pit walls in the higher benches. The resulting

pit following erosion does not necessarily satisfy minimum mining width constraints.

• Dilation operates by incorporating all blocks into the current solution such that at least one

of the blocks within a containing width is mined. This is a complete expansion of the entire

pit, and necessarily satisfies minimum mining width constraints.

These operators can be combined into a cleaning heuristic. In mathematical morphology the

closing is the result from applying dilation followed by erosion. This tends to ‘close’ holes within

the input because the dilation will incorporate new blocks that may not be removed by the

subsequent erosion. The opening is the result from applying erosion followed by dilation. This

operation removes small groups of blocks that are not large enough to survive the erosion

operation. Both of these can be applied to ultimate pit models and yield new ‘cleaned’ pits that

will have fewer (with closing), or no (with opening) minimum mining width violations.

These operators are very quick, requiring only a handful of linear scans over the blocks and

widths. However, the closing is not guaranteed to satisfy minimum mining width constraints and

like all other purely geometric approaches does not consider block value when deciding which

blocks to remove or incorporate into the solution. An additional drawback of the mathematical

morphology approaches is that they are not able to take advantage of the optimization described

in Section 4.2.1.2 where the total number of enforcement constraints is reduced by only

incorporating them on the positive blocks. Both erosion and dilation require that all of the

mining width sets, even on non-positive blocks, are explicitly specified.

For these reasons the mathematical morphology based heuristics are not incorporated into the

computational comparison in Section 4.6, however they were implemented. For the unreduced

bauxite dataset on the left in Figure 4.3 the ultimate pit contains 74,412 blocks of which 608 do

not satisfy minimum mining width constraints. The pit following closing contains 75,627 blocks

(an increase of 1,215) of which 485 are unsatisfying (a decrease of 123 blocks). This increase in

mining decreases the contained value from $28,416,592 to $27,673,437, by 2.6%. The pit following

opening contains 72,629 blocks (a decrease of 1,783) and fully satisfies minimum mining width

constraints because opening ends with a dilation operation. This reduction in pit size decreases

the contained value to $26,913,569 which is a reduction of 5.3%.
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4.4.4 Meta-heuristic Methods

The appeal of meta-heuristic methods for solving the ultimate pit problem with minimum

mining width constraints is that they can generally obtain reasonable solutions in a relatively

short time. There is, unfortunately, no guarantee that the result is optimal. However for the very

largest problems, that likely remains out of reach for all methods considered in this dissertation.

Meta-heuristics are discussed in more detail in Section 2.5.5.

Many meta-heuristics require subroutines for the following operations: generating random

satisfying solutions, efficiently modifying a given solution, and combining two solutions together

into a third solution. Additionally it may be useful to be able to perform a ‘hill-climbing’ step on

a solution to obtain a very similar solution with a better objective value. Each of these operations

for the ultimate pit problem with minimum mining width constraints are discussed in this section.

Random satisfying pits are generated by randomly assigning values to the width variables and

then applying a ‘flood fill’ or breadth first search to satisfy precedence constraints. The resulting

pits satisfy both minimum mining width constraints and precedence constraints by construction.

The optimal solution could be generated with this procedure although it is unlikely. Most real

world problems have tens of thousands of width variables that are zero or one for a large solution

space. Experience suggests that the optimal solution consists of fewer ones than zeros, so the

random distribution used to initialize the width variables should be skewed.

For completeness, and to verify that the more sophisticated solutions considered in this

dissertation are worthwhile, several of these random solvers are included in the computational

comparison. Each random solver is given 20 minutes to generate and evaluate as many random

pits as possible with the given proportion of zeros. The final pit is just the best out of those

generated within the time limit. In practice this approach is primarily used within any other

meta-heuristics to generate initial solutions.

One method for slightly modifying or mutating given solutions is to select a nearby width, for

example one such that at least one of its contained blocks is mined, and then mine the rest of it

along with any necessary antecedents. This grows the pit a small amount by incorporating

additional blocks and if used within the context of simulated annealing or a genetic algorithm is

useful. One advantage of this modification is that it does not require regenerating the entire pit
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and all constraints remain satisfied. The opposite form of mutation, where blocks are removed, is

more difficult. Removing blocks, even if done by removing an entire width at a time, may yield a

solution that no longer satisfies precedence or minimum mining width constraints. Alternatively a

‘shrinking’ approach could assign the value of a width variable to zero - but this requires

completely regenerating the pit from the remaining widths.

A simple crossover operation is to stochastically take width assignments from each parent

solution and generate the resulting pit. This is a uniform crossover. Again, the main variables of

interest are the auxiliary width variables, and not the block variables which are harder to work

with directly and can instead be derived from any given width assignment.

Hill-climbing is achieved by evaluating very nearby solutions in a matter similar to the floating

cone algorithm. Any width variables which are currently assigned zero can be evaluated with a

linear search to identify the contained value of the unmined blocks. If that value is positive then

they are included in the solution. This suffers from the same overmining and undermining issues

present in all floating cone approaches but does yield a higher valued solution, and can be used to

improve a solution within its local neighborhood.

These techniques are implemented in the Evolutionary solver. This genetic algorithm

maintains a population of elites (high valued solutions from previous generations), immigrants

(fresh randomly generated solutions), cross-overs (combinations of two elites), and mutants (small

changes to elites). At each iteration the candidate solutions, which are pits formed from width

assignments, are partially sorted and the lower quality solutions are discarded. Then the

appropriate number of cross-overs, mutants, and immigrants are generated.

Meta-heuristics generally suffer from having a large parameter space which all have a

non-negligible impact on performance and the resulting solution quality. A genetic algorithm

requires the user to specify the appropriate population size, crossover rate, number of generations,

and several other parameters. Simulated annealing requires an appropriate cooling schedule which

is non-obvious and difficult to get correct. For the computational comparison in Section 4.6

reasonable parameters were sought, but the solutions were found to be of lower quality than the

optimization based techniques which follow. Additional effort may be warranted to determine

better parameters to use, higher quality unit operations, or more advanced techniques for

population control and improved convergence.
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4.4.5 Commercial Solvers

For completeness the entire problem can be given to a commercial branch and bound integer

programming solver such as CPLEX or Gurobi, [139, 140]. These solvers first apply a ‘presolve’

operation to transform the model into an equivalent model such that the presolved model has the

same feasibility and bounded properties, and such that the objective value of the presolved model

is identical to the original model. Then the solution to the linear programming relaxation is

sought typically with primal simplex, dual simplex, or by an interior point method such as the

barrier algorithm with crossover. Finally branch and bound is used to identify the optimal

solution by fixing certain variables to integer values and solving many more linear relaxations.

These solvers are the products of extensive work and research into the general integer

programming paradigm and perform well across all manner of inputs. However, in this context,

they are not designed to handle this specific problem and, unless the problem is very small, do

not perform well. The Gurobi solver is present in the computational comparison with a time limit

of 20 minutes.

4.4.6 Lagrangian Relaxation Guided Search

The primary integer programming formulation developed in Section 4.2.1 is very similar to the

original ultimate pit problem by construction. The main complication stems from the addition of

the enforcement constraints in Constraint 4.4. It seems natural, therefore, to remove those

constraints by dualizing them into the objective and penalizing any transgressions following the

tenets of Lagrangian relaxation introduced in Section 2.5.3. One notable aspect of this approach

is that the second half of the minimum mining width constraints (the assignment constraints –

Constraint 4.3) do not need to be dualized because they are exactly the same as the precedence

constraints.

This approach removes, in some sense, the troublesome enforcement constraints but introduces

several other problems. It is now necessary to determine appropriate dual multipliers, or penalties,

on the dualized enforcement constraints which can prove difficult and computationally expensive.

Additionally, this approach takes aim at the linear relaxation of the original problem and is not

guaranteed to determine the optimal integer solution. However when carefully implemented with

necessary extensions this approach proves to be quite effective even for very large problems.
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4.4.6.1 Lagrangian Formulation

The original formulation and Lagrangian relaxation with the enforcement constraints dualized

into the objective function are as follows.

Sets:

• b ∈ B, the set of all blocks.

• b̂ ∈ B̂b, the set of antecedent blocks that must be mined if block b is to be mined.

• w ∈ W, the set of all mining widths.

• b̄ ∈ B̄w, the set of blocks that are within mining width w.

• w̄ ∈ W̄b, the set of mining widths of which block b is a member.

Parameters:

• vb, the economic block value of block b.

• λb, the dual multiplier for the enforcement constraint associated with block b. The best

values for these ‘parameters’ are sought. Note λb ≥ 0 ∀b ∈ B.

Variables:

• Xb, 1 if block b is mined, 0 otherwise.

• Mw, 1 if mining width w is satisfied, 0 otherwise.

Original Formulation:

maximize
∑
b∈B

vbXb (4.22)

s.t. Xb −Xb̂ ≤ 0 ∀b ∈ B, b̂ ∈ B̂b (4.23)

Mw −Xb̄ ≤ 0 ∀w ∈ W, b̄ ∈ B̄w (4.24)

Xb −
∑

w̄∈W̄b

Mw̄ ≤ 0 ∀b ∈ B λb (4.25)

0 ≤ Xb,Mw ≤ 1 ∀b ∈ B, ∀w ∈ W (4.26)

114



Lagrangian Relaxation:

maximize
∑
b∈B

(vb − λb)Xb +
∑
w∈W

∑
b̄∈Bw

λb̄

Mw (4.27)

s.t. Xb −Xb̂ ≤ 0 ∀b ∈ B, b̂ ∈ B̂b (4.28)

Mw −Xb̄ ≤ 0 ∀w ∈ W, b̄ ∈ B̄w (4.29)

0 ≤ Xb,Mw ≤ 1 ∀b ∈ B,∀w ∈ W (4.30)

Function 4.27 is the objective function which contains the simplified and collected dualized

enforcement constraints. Inequality 4.28 are the unchanged precedence constraints, and Inequality

4.29 are the unchanged assignment constraints. Finally Inequality 4.30 are the unchanged

variable bounds. Note that this problem was, and remains, a maximization problem and because

the enforcement constraints were of the form AX ≤ 0, their dual multipliers, λb, are restricted to

be non-negative.

In order to better facilitate the following steps the objective, Function 4.27, slightly changes

the indices and range on the summation in Inequality 4.25. This is to collect the λb variables on a

per mining width basis, which is more clear. This small algebraic manipulation does not change

the results.

4.4.6.2 Interpretation

First, recognize that the resulting Lagrangian relaxation model, when the λs are fixed, is of

precisely the same structure as the original ultimate pit problem without minimum mining width

constraints. We can take the dual of the relaxed Lagrangian which can be solved with the

pseudoflow algorithm, and the highly efficient MineFlow implementation developed in Chapter 3.

In the new network the M variables become nodes, and the assignment constraints become

additional precedence constraints.

This relaxation has a nice interpretation. The original enforcement constraints are on a per

block basis, and require each mined block to be a part of a completely mined out width. When an

enforcement constraint in the original formulation is binding then its associated dual has a

positive value, now dubbed λb. This value has units which are equivalent to those of the objective
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function and can be understood to be the ‘price’ of any given enforcement constraint. That is, it

is exactly the cost associated with satisfying minimum mining width constraints for that block.

This cost must be paid by the original block value. So the new ‘block values’ in our relaxation

are vb − λb. If λb is too large; the price of satisfying enforcement constraints exceeds some

unknown threshold, then the block will not be mined and Xb will be zero.

This payment goes towards the width variables of which that particular block is a member.

This is the second part of the new objective function (Function 4.27). Mining widths originally

contain no inherent value, but they adopt the value that is provided by any of their contained

blocks in order to pay for any of the negative blocks which they contain.

Thus positive valued blocks are able to pay to extract some of their neighboring blocks in order

to satisfy minimum mining width constraints, albeit indirectly. An example helps clarify this.

4.4.6.3 Example

Consider the very small ultimate pit problem with minimum mining width constraints in

Figure 4.9. This example has seven blocks, six precedence constraints, two mining width sets

(each consisting of two blocks), and four assignment constraints. For this example consider only a

single enforcement constraint on block X2 which is X2 −M1 −M2 ≤ 0.

X1 X2 X3

X4 X5 X6 X7

M1 M2 20 80 10

-30 -30 -30 -30

x

z

Figure 4.9 A very small example ultimate pit problem with minimum mining width constraints.
Left: the seven block variables and two auxiliary variables. Right: The block values.

Applying the Lagrangian relaxation to the enforcement constraint and dualizing the resulting

model yields the flow models in Figure 4.10. On the left the dual multiplier, λ2, for block X2 is

zero, and for the right λ2 = 15. When λ2 = 0 the result is the original ultimate pit, and when

λ2 = 15 the ‘value’ of the central block is reduced by 15 and that value is routed ‘back’ to the

mining widths. Solving this flow model for the ultimate pit now mines the block to the left and

the necessary overlying block (X1 and X4) which is the optimal solution.
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20 65 10
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15 15
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T

15 15

65
20 10

30 30 30 30

Figure 4.10 The small example’s corresponding flow problems. Left: With a dual multiplier of 0.
Right: With a dual multiplier of 15.

The value of 15 for the dual multiplier was somewhat arbitrarily chosen, and deserves more

careful attention. In this example there are two breaking points. When λ2 ≤ 10 the solution to

the flow problem is the original ultimate pit, and does not satisfy minimum mining width

constraints. When λ2 > 20 the solution to the flow problem is too large corresponding to mining

all seven blocks, which is not the best solution either. This corresponds to not using enough funds

from X2 to pay for minimum mining width constraints and using too many funds respectively.

This problem is compounded for larger and more complicated models where determining the

correct dual multipliers is a serious challenge.

Another concern made clear through this example is an apparent imbalance in the change in

value. The block value associated with X2 is reduced by 15, but the total available value increases

by 30. 15 for each mining width. This is because the enforcement constraint (X2 −M1 −M2 ≤ 0)

when dualized into the objective function has a coefficient of 1 on both M variables. Theoretically

this is the correct thing to do, but it seems slightly off. This is a consequence of having or

constraints, where no particular minimum mining width constraint is preferred over another.

Finally, when the full linear relaxation of this model is solved and the dual on the enforcement

constraint is calculated it has a value of 10. This is the most correct dual multiplier to use, at it

corresponds to the exact cost of the enforcement constraint at optimality. If the constraint were
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not in place, then no M variables would be 1 and the left hand side of the example (the blocks

with values 20 and -30) would not be mined. 10 dollars is ‘lost’ to create the more operational pit

design with a mining width of two blocks. However, if this dual multiplier is plugged into the

relaxation precisely, the identified pit will be too small (because pseudoflow always identifies the

smallest maximum valued closure), and does not satisfy the minimum mining width constraints.

4.4.6.4 The Lagrangian Relaxation Guided Search

Applying Lagrangian relaxation to the enforcement constraints inspires a new approach to

solving the ultimate pit problem with minimum mining width constraints. The Lagrangian

relaxation guided search follows in Algorithm 4.

Following the developments in Chapter 3 it is now possible to solve very large ultimate pit

problems rapidly, especially when only a few block values are changed between iterations. This is

necessary for this Lagrangian relaxation inspired approach, because the number of ‘blocks’ has

increased substantially, each mining width set becomes another ‘block’, and the number of

precedence constraints has also increased, each assignment constraint is another precedence

constraint.

At each iteration if the computed pit already satisfies minimum mining width constraints it

might not be the optimal solution because the dual values might be too high, and certain blocks

might oversatisfy. In this case the associated dual multipliers on the oversatisfying blocks should

be decreased to guide the solution towards the situation where each minimum mining width

constraint is only just satisfied. If the dual multiplier is already zero, no action is necessary as this

corresponds to the situation where the minimum mining width constraints are satisfied ‘for free’.

If the computed pit does not satisfy minimum mining width constraints then there are some

blocks that are mined, but not enough of the blocks near to them are mined. Therefore the dual

multiplier on these blocks should be increased in order to reduce its value and use that value to

fund neighboring blocks and satisfy the minimum mining width constraints. So that this iteration

is not wasted it is prudent to evaluate nearby solutions that do satisfy minimum mining width

constraints, either by computing subsets, supersets, or other nearby solutions as discussed in the

preceding sections. If any of these nearby feasible solutions satisfy and are better than the best so

far, they are recorded as the current best solution.
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Algorithm 4: Algorithm to compute an ultimate pit which satisfies minimum mining
width constraints.

Initialize a new flow network where every block and every mining width set is a node;
for All positive blocks do

Connect the source to this block with an arc whose flow and capacity are equal to the
block value;

for All negative blocks do
Connect this block to the sink with an arc whose flow and capacity are equal to the
absolute value of the block value;

for All mining width sets do
Connect the source to this node with an arc whose initial flow and capacity are equal
to zero;

Initialize all dual multipliers, one for each positive block, to zero;
Initialize current best solution to the empty set;
while Maximum iterations have not been completed do

Solve for the minimum cut using pseudoflow;
if Minimum cut satisfies minimum mining width constraints then

if Minimum cut is better than current best solution then
Set the current best solution to this cut;

else
for Several nearby satisfying pits do

if This pit is better than current best solution then
Set the current best solution to this pit;

for Each positive block do
if The block is mined, but does not satisfy minimum mining width constraints then

Increase the dual multiplier;
Decrease the capacity on the arc from the source to this block by the increase;
Increase the capacity on the arcs from the source to all containing mining width
sets by the increase;

if The block is mined, and oversatisfies minimum mining width constraints then
Reduce the dual multiplier;
Increase the capacity on the arc from the source to this block the decrease;
Decrease the capacity on the arcs from the source to all containing mining width
sets by the decrease;

if No change in dual multipliers then
Break;

Return the best solution;
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4.4.6.5 Updating the Dual Multipliers

Each dual multiplier, on each positive block, is bounded theoretically from below by zero and

heuristically from above by the original block value. It is natural to begin with dual multipliers of

zero, because the problem in this case is the same as the original ultimate pit problem and if this

satisfies no further work is required. Unsatisfying blocks must have their duals increased, but by

how much is unclear. Each dual multiplier does not have an independent effect on the solution.

The point of this approach is that blocks can work together to satisfy minimum mining width

constraints and keep duals as low as possible. Working through the interrelationships between

mining widths to identify the best possible solution is what makes this problem non-trivial.

The subgradient optimization approach, discussed in Section 2.5.3, tends to work well in

practice and can be simplified for this specific problem. In Equation 2.17, b is zero so first

compute the helper vector C which is AXt. The helper vector encodes on a per block basis the

mining width satisfaction, that is: when Cb is zero the block is either not mined or perfectly

satisfied with exactly one containing width mined. When Cb is one, then the block does not

satisfy mining widths, and finally when Cb is negative then the block oversatisfies.

Cb = Xb −
∑
w̄∈W̄b

Mw̄ (4.31)

The new dual multiplier is then:

λt+1
b ← min{max{λtb +

vb × st × Cb

||C|| , 0}, vb} (4.32)

Where st is the step size for iteration t. By construction 0 < st ≤ 1. In practice starting st

around 0.4 and setting st+1 ← st × 0.8 every few iterations has given good results, although it is a

parameter to consider and potentially investigate for specific problems.

4.4.6.6 Discussion

The Lagrangian relaxation guided search is motivated by duality theory and has a strong

intuitive justification. It also works well in practice. The Lagrangian-Subgradient solver in the

computational comparison implements this approach, and is very successful.
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The efforts to improve the pseudoflow algorithm and develop a fast, flexible solver in Chapter

3 are highly relevant to the practical success of this approach. Many problems require solving

hundreds or even thousands of large constructed ultimate pit problems, and a fast ultimate pit

solver is very relevant. However there are additional avenues to explore that could potentially

improve the practical performance of this method.

Subgradient optimization is a well suited approach for determining and updating the dual

multipliers however, in this problem it can be prone to oscillation. When a block doesn’t satisfy

minimum mining width constraints, its dual is increased – but if this increase is too large then it

is likely to oversatisfy on the next iteration, and therefore must be reduced. To a certain extent

this is mitigated by using a steadily reducing step size, but it may be possible to smooth the dual

multipliers more aggressively, potentially by averaging the dual multipliers over the last few

iterations.

The subgradient optimization approach elects to update all of the dual multipliers for every

block that are currently unsatisfying or oversatisfying on each iteration. In certain datasets this

may be contributing to the oscillation and slower convergence. It may be worthwhile to update a

subset of the dual multipliers on some steps, and instead elect to leave certain dual multipliers

fixed for a while.

One idea, that was not evaluated, is to use a meta-heuristic to ‘optimize’ the dual multipliers.

A population of dual multipliers could be maintained, and combined through, for example, a

particle swarm optimization methodology that may yield higher quality duals faster. Particle

swarm optimization could take advantage of the subgradient in addition to the objective value.

This is a potential area for future research.

4.4.7 The Bienstock Zuckerberg Algorithm

In Chapter 5 the Bienstock-Zuckerberg algorithm is used to solve the general block scheduling

problem with a wide range of constraints. In the block scheduling problem each block can

generally be assigned to one of several different destinations, and mined in one of several different

time periods. Additionally there are different classes of constraints to enforce capacity

requirements, blending, and handle various other concerns. However, the block scheduling

problem is a superset of the ultimate pit problem in terms of formulation complexity. So by
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removing all auxiliary constraints and setting the number of destinations and time periods to one

the original ultimate pit problem is revealed.

The BZ algorithm and information on how to incorporate the minimum mining width

constraints are discussed in Section 5.3, and are not repeated here. The Bienstock-Zuckerberg

algorithm with the integerization procedure from Aras, Dağdelen and Johnson is included in the

computational comparison. Note that this implementation of the BZ algorithm uses Gurobi to

solve the master problem and MineFlow to solve the subproblem.

4.4.8 Combined Approach

One of the distinct advantages of the BZ algorithm with the integerization approach from

Aras, Dağdelen and Johnson is that it is very easy to incorporate other heuristic solutions. Any

heuristic solution can be orthogonalized with the current set of orthogonal columns at any stage,

such that the new orthogonal columns necessarily span the heuristic solution. Therefore, the

Lagrangian relaxation guided search can be incorporated directly into the Bienstock-Zuckerberg

algorithm.

This approach is included in the computational comparison as the Combined solver. The

combined solver uses the Lagrangian relaxation guided approach to generate an initial set of

orthogonal column for the BZ algorithm.

4.5 Bounding the Problem

All of the solvers developed in Section 4.4 are highly sensitive to the size of the input problem.

The ultimate pit problem with minimum mining width constraints is NP-complete, as shown in

Appendix A, and any efforts to make the problem smaller and easier to solve are warranted. The

effectiveness of bounding ultimate pit problems has been demonstrated before, including by

Barnes in 1982 [60].

Two types of bounds are considered. An inner bound is a set of blocks which is necessarily

contained within the optimal answer, and an outer bound is a set of blocks such that the optimal

pit is necessarily contained within. Procedures for identifying both of these bounds are presented.
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4.5.1 Inner Bound

An algorithm to compute an inner bounding pit for the ultimate pit problem with minimum

mining width constraints follows in Algorithm 5.

Algorithm 5: Algorithm to compute an inner bounding pit which satisfies minimum
mining width constraints.

Initialize the set of current positive blocks to be the set of all positive blocks;
while The set of current positive blocks is not empty do

Solve for the minimum cut using pseudoflow;
Remove all positive blocks which do not satisfy minimum mining width constraints;

Return the last minimum cut;

In practice this algorithm very rarely terminates with the empty set for realistic models.

There generally exists some set of positive valued blocks that satisfy the minimum mining width

constraints and are themselves a valid self-supporting ultimate pit. These blocks necessarily are

within the final solution and can be removed to reduce the problem size substantially.

4.5.2 Outer Bound

The outer bound can be computed by solving a single constructed ultimate pit instance

following the Lagrangian relaxation approach discussed in Section 4.4.6. Simply set each dual

multiplier to the maximum possible value for each block (λb ← vb), and solve. The resulting pit

necessarily satisfies minimum mining width constraints, and could never be any larger. This

substantially reduces the problem size in all case studies considered.

Note that the original ultimate pit is not necessarily contained within this bound. Only the

ultimate pit which satisfies minimum mining width constraints is.

4.6 Solution Comparison

Several different approaches to the ultimate pit problem with minimum mining width

constraints were proposed in this chapter. A computational comparison was executed in order to

draw broad initial conclusions about the proposed approaches effectiveness and suitability in real

world applications. This comparison is not comprehensive, and there are several areas where it is

very difficult to make a proper and fair evaluation of the solvers. It is important to note that the

comparison presented herein might speak more to the quality of the author’s implementations
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than anything else. As demonstrated in Chapter 3, it is generally possible to apply additional

software engineering effort and some theoretical knowledge in order to tremendously decrease the

runtime of any given solver.

The solvers considered in this comparison are summarized in Table 4.1. All of the solvers,

except for Gurobi, were implemented by the author in approximately 9,000 lines of C++ code.

Reasonable effort has been expended to develop the solvers with an emphasis on speed and

minimizing memory use while accurately implementing the relevant ideas. Where appropriate,

reasonable parameter values were sought through experimentation, such as the step size schedule

in the Lagrangian search or the population sizes and crossover rate for the evolutionary solver. In

solvers where convergence is not guaranteed a time limit of 20 minutes was imposed.

Table 4.1 The solvers used in the computational comparison

Solver Name Section Brief Description

Ultimate-Pit Section 4.4.1 Solve for the ultimate pit, and hope it satisfies.
Float-Bottom-Up Section 4.4.2 Floating cone heuristic from the bottom up.
Float-Top-Down Section 4.4.2 Floating cone heuristic from the top down.
Float-Random Section 4.4.2 Floating cone heuristic in a random order.
Float-Value-Ascending Section 4.4.2 Floating cone heuristic by width value ascending.
Float-Value-Descending Section 4.4.2 Floating cone heuristic by width value descending.
Subset Section 4.4.3 Largest subset of ultimate pit.
Superset-Width Section 4.4.3 Superset of ultimate pit, by evaluating widths.
Superset-Cone Section 4.4.3 Superset of ultimate pit, by evaluating cones.
Random-3 Section 4.4.4 Random search solver, 75% zeros.
Random-15 Section 4.4.4 Random search solver, 94% zeros.
Random-31 Section 4.4.4 Random search solver, 97% zeros.
Evolutionary Section 4.4.4 Evolutionary algorithm solver.
Gurobi Section 4.4.5 The Gurobi Version 9.5.2 commercial IP solver.
Lagrangian-Subgradient Section 4.4.6 The Lagrangian relaxation guided solver.
Bienstock-Zuckerberg Section 4.4.7 The Bienstock-Zuckerberg algorithm.
Combined Section 4.4.8 The Combined Lagrangian and BZ algorithm.

Six datasets were collected ranging from a very small 2D synthetic dataset to a large realistic

3D block model from a real proposed gold mine, Table 4.2. The same dataset can be used with

many different minimum mining width templates or precedence constraints. However, the

primary focus of this chapter is on the minimum mining width constraints - so precedence

constraints are held constant at 45° with nine benches of connections. In the computational
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comparison the dataset name has a suffix appended to indicate the minimum mining width size.

That is, bauxitemed 2x2, is the BauxiteMed dataset with 2× 2 minimum mining width

constraints. Similarly biggold 5x5c is the BigGold dataset with a 5× 5 minimum mining width

template with the corners removed. The five different mining width templates considered are the

suitable templates shown in Figure 4.2.

Table 4.2 The datasets collected for the computational comparison

Dataset Name Block Model Size Brief Description

Sim2D76 75× 1× 40 Small synthetic 2D dataset simulated with sequential Gaus-
sian simulation.

BauxiteMed 120× 120× 26 3D bauxite dataset estimated with ordinary Kriging.
MclaughlinGeo 140× 296× 68 Well known Mclaughlin Dataset.
CuCase 170× 215× 50 A laterally expansive copper dataset simulated with sequen-

tial Gaussian simulation.
CuPipe 180× 180× 85 A steeply dipping porphyritic copper dataset.
BigGold 483× 333× 101 A large finely estimated gold dataset.

The high performance server used to run all experiments is called isengard, and is a large

Linux machine made available remotely for all Colorado School of Mines students. The server has

48 Intel(R) Xeon(R) E5-2690 v3 @ 2.60GHz processors and 377 Gigabytes of RAM, although not

all of this computing power was used exclusively for this comparison. All of the solvers, excluding

Gurobi, are single-threaded, which is a useful potential avenue for future research. Even the

Lagrangian guided solver could be multi-threaded by evaluating different paths and delegating the

local search subroutine to another thread.

4.6.1 Problem Bounding

Inner bounds and outer bounds were computed for the raw datasets following the procedures

described in Section 4.5. Relevant statistics are tabulated in Table 4.3, including the compute

time required to prepare the smaller equivalent problem. For the original ultimate pit problem

without minimum mining width constraints bounding is less necessary because solving for the

ultimate pit is already very fast. These steps are highly effective at making the problems more

manageable, and are a necessary part of the overall process for realistic datasets.
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The effectiveness of the bounding procedure necessarily decreases as the size of the minimum

mining width template increases. It is much more difficult to identify a large inner bound when

the subset step in the bounding procedure removes many more blocks.

The large reduction in problem size is expected for realistic datasets constructed with regular

block models. Many practitioners use large models that extend beyond the ultimate pit limits

with predominately negative valued blocks. These blocks are identified during the outer bounding

process and quickly removed.

The bounding procedure described in Section 4.5 is also generally very quick. Even with the

largest model considered with the largest minimum mining width constraint template the process

completes in less than two minutes. This is because the bounding procedure leverages the

improvements to ultimate pit optimization developed in Chapter 3, and the bounds are computed

by solving several specially constructed ultimate pit problems.

Recall that the number of enforcement constraints is the same as the number of positive

blocks, which is a useful metric for the size of the problem, and can be used to evaluate the

effectiveness of the bounding procedure.
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Table 4.3 Time taken and reduced problem size following bounding the ultimate pit problem with minimum mining width constraints
for real datasets.

Original Problem Bounded Problem

Test Case Blocks Widths Precedence
Constraints

Enforcement
Constraints

Compute
Time

Blocks Widths Precedence
Constraints

Enforcement
Constraints

sim2d76 3x1 3,000 2,920 8,697 681 0s 250 119 535 87
sim2d76 5x1 3,000 2,840 8,697 681 0s 366 185 873 113
sim2d76 8x1 3,000 2,720 8,697 681 0s 681 285 1,385 147
bauxitemed 2x2 374,400 368,186 7,116,016 37,671 2s 40,404 10,638 424,941 8,973
bauxitemed 3x3 374,400 362,024 7,116,016 37,671 2s 62,831 17,392 734,628 11,811
bauxitemed 4x4c 374,400 355,914 7,116,016 37,671 2s 72,219 20,586 875,792 12,689
bauxitemed 5x5c 374,400 349,856 7,116,016 37,671 2s 88,199 27,268 1,123,962 13,982
cucase 2x2 1,827,500 1,808,300 39,562,848 34,455 9s 96,254 12,848 1,033,338 7,068
cucase 3x3 1,827,500 1,789,200 39,562,848 34,455 14s 196,365 26,935 2,810,325 10,268
cucase 4x4c 1,827,500 1,770,200 39,562,848 34,455 12s 214,397 31,246 3,155,245 10,559
cucase 5x5c 1,827,500 1,751,300 39,562,848 34,455 14s 258,797 45,432 4,006,969 12,892
cupipe 2x2 2,754,000 2,723,485 62,282,528 77,113 13s 489,199 41,433 9,436,699 33,672
cupipe 3x3 2,754,000 2,693,140 62,282,528 77,113 18s 855,937 69,401 17,757,880 46,259
cupipe 4x4c 2,754,000 2,662,965 62,282,528 77,113 22s 900,816 76,676 18,797,251 47,054
cupipe 5x5c 2,754,000 2,632,960 62,282,528 77,113 24s 992,042 91,177 20,919,081 48,043
mclaughlingeo 2x2 2,817,920 2,788,340 62,835,432 32,426 13s 69,552 3,789 606,531 2,107
mclaughlingeo 3x3 2,817,920 2,758,896 62,835,432 32,426 20s 215,797 12,405 3,092,202 4,396
mclaughlingeo 4x4c 2,817,920 2,729,588 62,835,432 32,426 17s 235,683 16,085 3,437,890 4,810
mclaughlingeo 5x5c 2,817,920 2,700,416 62,835,432 32,426 34s 316,585 28,894 5,014,208 6,847
biggold 2x2 16,244,739 16,162,424 378,804,772 93,103 61s 1,073,896 74,574 20,870,865 47,368
biggold 3x3 16,244,739 16,080,311 378,804,772 93,103 99s 2,412,996 167,064 51,178,640 74,973
biggold 4x4c 16,244,739 15,998,400 378,804,772 93,103 97s 2,661,465 208,861 57,162,354 78,611
biggold 5x5c 16,244,739 15,916,691 378,804,772 93,103 101s 3,450,204 293,460 75,676,445 86,024
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4.6.2 Solvers Performance vs Gurobi

Gurobi was able to solve eight of the 23 datasets to optimality within 20 minutes each. The

largest of these, bauxitemed 4x4c, contains 1,104,542 rows, 92,805 columns, and 2,335,746

nonzeros in the constraint matrix. These datasets are of interest in evaluating the proposed

solution methods because the optimal answer is known.

The small 2D datasets; sim2d76 3x1, sim2d76 5x1, sim2d76 8x1 are so small that all solvers,

even the general purpose solver Gurobi, finish in under a second so the only relevant metric for

comparison is the solution quality, or objective function value, which is summarized in Table 4.4.

The ultimate pit value is included, even though the ultimate pit does not satisfy minimum mining

width constraints, in order to provide additional information.

The most relevant takeaway from this comparison is that for very small models the

Lagrangian guided search solver, the evolutionary meta-heuristic approach, and the BZ solver are

all able to find the optimal answer, whereas the other primarily geometric approaches often

perform quite poorly. One interesting outcome was that for sim2d76 8x1 the floating cone

approach was able to identify the optimal solution.

Table 4.4 Value achieved on the three very small 2D datasets by each solver.

Solver sim2d76 3x1 sim2d76 5x1 sim2d76 8x1

Ultimate-Pit 691 2,791 6,301
Gurobi 482 2,424 5,114
Lagrangian-Subgradient 482 2,424 5,114
Evolutionary 482 2,424 5,114
Bienstock-Zuckerberg 482 2,424 5,114
Combined 482 2,424 5,114
Float-Bottom-Up 234 2,262 5,114
Float-Top-Down 234 2,215 2,237
Float-Random 234 2,262 5,114
Float-Value-Ascending 234 2,262 1,632
Float-Value-Descending 234 2,262 1,632
Subset 90 671 4,181
Superset-Width 455 0 0
Superset-Cone 238 2,188 668
Random-3 0 0 0
Random-15 152 1,837 4,471
Random-31 152 1,053 4,471
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The five additional larger models that Gurobi was able to solve to optimality are summarized

in Table 4.5.

Table 4.5 Value achieved and time taken on the five smallest 3D datasets by solver.

Dataset / Solver Objective Percent Elapsed Speed-up

cucase 2x2

Gurobi 127,299 – 39s –
Combined 124,869 98.1% 1m 2s 0.6x
Lagrangian-Subgradient 118,010 92.7% 38s 1.0x
Bienstock-Zuckerberg 124,040 97.4% 31s 1.3x
Evolutionary 66,000 51.8% 41s 1.0x
Floating Cone 99,095 77.8% 2s 19.5x
Geometric 69,806 54.8% 0s –

mclaughlingeo 2x2

Gurobi 6,660,127 – 46s –
Combined 6,657,377 99.9% 23s 2.0x
Lagrangian-Subgradient 6,651,721 99.8% 18s 2.5x
Bienstock-Zuckerberg 6,618,472 99.4% 2s 23x
Evolutionary 4,727,968 71.0% 12s 3.8x
Floating Cone 5,613,584 84.3% 1s 46x
Geometric 5,959,546 89.5% 0s –

bauxitemed 2x2

Gurobi 34,587 – 18s –
Combined 34,587 100.0% 7s 2.6x
Lagrangian-Subgradient 34,202 98.9% 5s 3.6x
Bienstock-Zuckerberg 34,357 99.3% 1s 18x
Evolutionary 21,313 61.6% 28s 0.6x
Floating Cone 24,251 70.1% 1s 18x
Geometric 0 – 0s –

bauxitemed 3x3

Gurobi 181,683 – 5m 45s –
Combined 178,059 98.0% 51s 6.7x
Lagrangian-Subgradient 171,745 94.5% 38s 9.1x
Bienstock-Zuckerberg 170,034 93.6% 24s 14.4x
Evolutionary 80,108 44.1% 51s 6.8x
Floating Cone 157,769 86.8% 5s 69x
Geometric 47,370 26.1% 0s –

bauxitemed 4x4c

Gurobi 294,136 – 14m 59s –
Combined 286,069 97.3% 1m 51s 8.1x
Lagrangian-Subgradient 275,330 93.6% 1m 7s 13.4x
Bienstock-Zuckerberg 283,954 96.5% 28s 31.8x
Evolutionary 121,727 41.4% 1m 6s 13.6x
Floating Cone 250,662 85.2% 5s 179.8x
Geometric 98,890 33.6% 0s –
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In these instances the time taken and objective function value achieved is relevant, however to

save space several of the solvers are combined together and only the best result is reported.

There are a few important takeaways from these larger datasets that are still small enough for

branch and bound. In all cases the Lagrangian relaxation guided solver, the Bienstock-Zuckerberg

algorithm, and the combined approach are better than the geometric and other meta-heuristic

approaches developed in this chapter. The evolutionary solvers effectiveness has decreased rapidly

as the problem size has increased, in all cases even under performing relative to the floating cone

based algorithm. This is expected, because the evolutionary solver does not fundamentally take

advantage of the structure of the problem in the way that the Lagrangian relaxation guided

solver, BZ algorithm, or the floating cone algorithm does.

The Lagrangian relaxation guided solver is able to achieve within 8% of optimal for all

problems in terms of objective function value. It is also generally faster, especially for the larger

datasets where the branch and bound algorithm present in Gurobi begins to suffer from its

exponential complexity.

The BZ solver is able to achieve within 7% of optimal for all problems, and in many cases is

much closer. BZ consistently outperforms the Lagrangian relaxation guided solver in runtime for

these small problem, but achieves a lower objective value in two of the five datasets.

The combined approach is the best of those considered. This is to be expected, as any benefits

from the Lagrangian relaxation guided solver are adopted directly as possible solutions into the

set of orthogonal columns within the broader context of the BZ algorithm.

4.6.3 Solver Performance On Large Datasets

The fifteen remaining datasets were too large for Gurobi, but the available results are

summarized in Table 4.6. Where possible the linear relaxation value as computed by Gurobi, and

the BZ algorithm, is reported. In the nine cases that Gurobi was able to solve the linear

relaxation it matched with the value reported by the prototype BZ algorithm. This gives an

approximate cost of the minimum mining width constraints when compared to the ultimate pit

value, but in general the linear relaxation of the ultimate pit problem with minimum mining

widths takes advantage of partially mining blocks to contribute to the enforcement constraints

while minimizing excess waste. It is not clear what the actual gap between the linear relaxation
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objective and unknown optimal integer objective is.

The best value achieved by the Lagrangian relaxation guided solver, the BZ algorithm using

the Aras procedure for integerization, and the combined approach is reported alongside how long

it took to achieve the result. A time limit of 20 minutes was enforced for all solvers.

The cupipe dataset exhibits strange behavior. Gurobi is unable to even solve any of the linear

relaxations after 20 minutes, but the Lagrangian search and BZ algorithm terminate after only a

handful of iterations. Owing to the steeply vertically dipping nature of the ore body it turns out

that the ultimate pit very nearly satisfies the minimum mining width constraints. For the

cupipe 2x2 dataset only five blocks are initially unsatisfied, and their duals are quickly

determined. In the cupipe 4x4c dataset it appears that the optimal solution is to mine nothing,

which due to the initial inner bounding process implies that the solved inner subset pit was

optimal, or at least very nearly so. The other datasets consist of many hundreds or thousands of

unsatisfying blocks in the ultimate pit which interact in complicated overlapping ways that the

algorithms must untangle.

The biggold 4x4c and biggold 5x5c are the only cases where limiting the 20 available

minutes to a single approach, instead of the combined solver, was able to achieve a higher

objective value. For these two datasets the Lagrangian solver obtained a slightly higher value.
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Table 4.6 Computational summary for large realistic datasets.

Ultimate Linear Bienstock Zuckerberg IP Lagrangian Solver Combined Solver

Dataset Pit Relaxation Objective Elapsed Objective Elapsed Objective Elapsed

bauxitemed 5x5c 831,293 678,949 536,357 5m 29s 542,531 3m 46s 556,534 14m 7s
cucase 3x3 567,613 508,270 446,474 20m 429,250 6m 6s 459,757 20m
cucase 4x4c 656,038 591,676 473,996 20m 476,178 10m 2s 514,271 20m
cucase 5x5c 1,236,046 1,166,025 744,101 20m 871,772 20m 1,008,365 20m
cupipe 2x2 25,757 10,312 10,312 6s 10,312 5s 10,312 14s
cupipe 3x3 78,320 42,961 33,340 13s 33,340 6s 33,340 17s
cupipe 4x4c 80,315 34,377 0 28s 0 40s 0 1m 6s
cupipe 5x5c 212,776 141,888 85,801 3m 44s 60,323 7m 37s 92,027 11m 5s
mclaughlingeo 3x3 25,265,407 24,302,490 23,993,483 52s 24,020,371 3m 18s 24,088,683 4m 35s
mclaughlingeo 4x4c 35,481,524 34,377,200 33,923,420 1m 44s 33,986,639 5m 34s 34,110,326 9m 53s
mclaughlingeo 5x5c 83,756,662 82,076,376 80,747,963 8m 56s 80,785,866 18m 39s 81,064,677 20m
biggold 2x2 1,032,842 870,006 806,384 1m 22s 794,218 4m 4s 822,791 10m 11s
biggold 3x3 11,515,028 11,014,858 9,814,845 20m 10,089,255 20m 10,245,597 20m
biggold 4x4c 18,205,567 17,615,751 14,194,367 20m 16,256,546 20m 16,232,940 20m
biggold 5x5c 22,847,235 – 9,071,733 20m 19,202,412 20m 19,143,637 20m
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4.7 Discussion

This chapter has focused on the development, and analysis, of a novel, efficient, formulation of

the conventional ultimate pit problem with minimum mining width constraints. Several methods,

ranging from geometric heuristics to full blown iterative optimization approaches based on

Lagrangian relaxation, were developed and compared with general purpose commercial solvers.

The BZ algorithm with operational constraints was also evaluated, although the details are left to

Chapter 5. A strong emphasis was placed on ensuring that the developed approaches and

techniques were readily applicable to real world datasets, across a wide range of deposits and

mining operations, and in realistic applications.

Both the Lagrangian relaxation guided search and the BZ algorithm are able to compute high

quality results in a reasonable amount of time on large datasets which exceed the capabilities of

more general purpose solvers. These developments will allow open-pit mine planning engineers to

make better decisions throughout their mine planning efforts and avoid the costly and error-prone

manual process of incorporating operational constraints.

Additionally, a small, but pedagogically useful, algorithm for the two-dimensional ultimate pit

problem with minimum mining width constraints was developed. This algorithm is not applicable

to real world problems, but helps to elucidate several aspects of this problem and may have

further applications in future developments.
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CHAPTER 5

THE BLOCK SCHEDULING PROBLEM WITH OPERATIONAL CONSTRAINTS

The block scheduling problem contends with many more constraints than the ultimate pit

problem, and is far more complicated. This chapter presents initial work and provides

formulations for incorporating minimum mining width constraints into the block scheduling

problem, additionally this chapter provides some initial insight into how these larger problems can

be solved with the Bienstock-Zuckerberg algorithm. The current best practice approach to solving

the direct block scheduling problem, the Bienstock-Zuckerberg algorithm, is applied and discussed.

Section 5.1 introduces the block scheduling problem and describes two of the formulations

which were suggested by Johnson in 1968 [44] and are the most commonly used. The first

formulation uses so-called at variables, which are natural, but are not always the most efficient

choice. The second uses by variables which have nice mathematical properties, especially with

precedence and sequencing constraints. Finally, this section introduces some of the operational

constraints that are most relevant in block scheduling.

Section 5.2 describes how minimum mining width constraints and minimum pushback width

constraints can be incorporated into the block scheduling problem with auxiliary variables in a

similar fashion to the ultimate pit problem with minimum mining widths discussed in Chapter 4.

Formulations are provided for both at and by variables.

Section 5.3 discusses how the Bienstock-Zuckerberg algorithm may be applied to solve direct

block scheduling problems with operational constraints. Relevant concerns regarding

integerization, variations to the conventional Bienstock-Zuckerberg algorithm, and

implementation details are discussed.

Finally, Section 5.4 presents two brief case studies applying the outlined approach to a very

small dataset and the realistic, well known McLaughlin gold mine dataset. The impact of relevant

operational constraints on the NPV of the open-pit mining project is evaluated.

5.1 Block Scheduling Preliminaries

The block scheduling problem is more complex than the ultimate pit problem and contains

more variables, more constraints, and does not afford a nice network flow based solution. Where
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the ultimate pit problem has a single variable which is set to 1 if a block is mined and 0

otherwise, in the block scheduling problem a set of variables are required for each block in order

to specify when that block will be mined and how it will be routed. This increases the

dimensionality of the solution space but allows for an objective function which aims to maximize

NPV instead of simply the contained undiscounted economic value.

Often, yet another dimension is added to each block variable to indicate which process that

block is routed to. In the ultimate pit problem the economic block value of any given block

assumes that the block goes to the highest value process available. In the block scheduling

problem this routing is often left as a choice to be determined by the optimization procedure

alongside realistic constraints on the destinations. For example, generally only so many blocks are

allowed to be routed to the mill within a particular time period.

Additionally, some block scheduling problems consider stockpiling, uncertainty, interactions

with other mining complexes, and more. One of the fundamental challenges of the direct block

scheduling problem is that each formulation is typically customized for a particular mining

application, and it is difficult to specify a general purpose formulation that is usable in all

scenarios. However, there are some common elements, and many constraints are of a similar

mathematical form. In the following two sections the two essential forms of most block scheduling

problems are presented.

5.1.1 At Variables

The first main type of block scheduling formulation uses variables which are called at

variables, and are specified to be 1 if a block is mined at a particular time and sent to a specific

destination. This is the most natural method for specifying many of the other types of constraints

in the block scheduling problem. A typical block scheduling problem using at variables may begin

with the following:

Sets:

• b ∈ B, the set of all blocks.

• b̂ ∈ B̂b, the set of antecedent blocks that must be mined if block b is to be mined.

• t ∈ T , the ordered set of all time periods (often yearly).
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• d ∈ D, the set of all possible destinations (mill, roaster, leach, dump, etc.).

Parameters:

• pb, the tonnage of block b.

• vb,t,d, the economic value of mining block b and sending it to destination d at time period t.

• gb, the grade of block b

• M̂t, the total maximum tonnage of mining capacity in time period t.

• D̂t,d, the maximum tonnage allowed to be routed to destination d in time period t.

• Ďt,d, the minimum tonnage required to be routed to destination d in time period t.

• Gt,d, the minimum average grade blending requirement at destination d in time period t.

Variables:

• Xb,t,d, 1 if block b is mined and sent to destination d in time period t, 0 otherwise.

The Simple Multi-Destination Block Scheduling Problem with at variables

maximize
∑
b∈B

∑
t∈T

∑
d∈D

vb,t,dXb,t,d (5.1)

s.t.
∑
t∈T

∑
d∈D

Xb,t,d ≤ 1 ∀b ∈ B (5.2)

∑
d∈D

Xb,t,d ≤
∑
d∈D

∑
t′≤t

Xb̂,t′,d ∀b ∈ B, b̂ ∈ B̂b, t ∈ T (5.3)

∑
b∈B

∑
d∈D

pbXb,t,d ≤ M̂t ∀t ∈ T (5.4)

∑
b∈B

pbXb,t,d ≤ D̂t,d ∀t ∈ T , d ∈ D (5.5)

∑
b∈B

pbXb,t,d ≥ Ďt,d ∀t ∈ T , d ∈ D (5.6)

∑
b∈B

(Gt,d − gb)pbXb,t,d ≤ 0 ∀t ∈ T , d ∈ D (5.7)

Xb,t,d ∈ {0, 1} ∀b ∈ B, ∀t ∈ T , d ∈ D (5.8)
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Where Equation 5.1 is the objective function using the pre-computed discounted block values.

The constraints in equation 5.2 are the reserve constraint which enforces that each block is mined

at most once.

Equation 5.3 define the precedence constraints. Because this formulation uses at variables a

precedence constraint between block b and b̂ can be read as, before the base block b is mined to

any destination all of its antecedent blocks must have been mined to some destination in some

earlier or equivalent time period. The t′ ≤ t limit on the second summation on the righthand side

of Equation 5.3 is what requires the set of time periods to be an ordered set.

Equation 5.4 contains the mining capacity constraints on a per period basis. Simply ensuring

that the total mined tonnage in a period, regardless of which destination is chosen, is below some

threshold.

Equations 5.5 and 5.6 are the maximum and minimum capacity thresholds on a per

destination basis for each time period. The minimum capacity is generally used to ensure that the

mill receives a sufficient quantity of ore within a period to remain operational. Some destinations,

such as a waste dump, may not have a minimum capacity.

Equation 5.7 is an example of a blending constraint that enforces a lower bound on the

average grade requirements at each process destination in each period.

Finally, Equation 5.8 enforces integrality on the at variables, and precludes meaningless

variable values.

5.1.2 By Variables

A common reformulation used to simplify the precedence constraints, and to facilitate

decomposition approaches such as the BZ algorithm, is to replace at variables with by variables.

A by variable is 1 if and only if the block is mined “by” time period t̆, (i.e no later than period t̆).

Similarly it is possible to apply this concept to the destinations, although the “by” name is a bit

out of place in that context. For this the possible destinations must be ordered, and a by variable

may be defined such that it is 1 if and only if block b is mined by time period t− 1, or it is mined

in time period t̆ with destination d̆ such that the ‘actual’ destination d is d ≤ d̆.

The full details associated with reformulating the objective and all relevant constraints is

documented in several places [101–103], and are shown in more detail in Section 5.3.2. The
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primary outcomes are that an at variable(Xb,t,d) can be replaced by at most two by variables as in

equations 5.9 to 5.11.

Xb,t,d = Zb,t,d − Zb,t,d−1 ∀b ∈ B, t ∈ T , d = 2, ..., |D| (5.9)

Xb,t,1 = Zb,t,1 − Zb,t−1,|D| ∀b ∈ B, t = 2, ..., |T | (5.10)

Xb,1,1 = Zb,1,1 ∀b ∈ B (5.11)

With this reformulation the precedence constraints are greatly simplified to being between two

by variables at a time, with no summations, however additional ‘precedence’ constraints are

required to enforce the appropriate by variable values. Following all of these machinations the

condensed and simplified form for the block scheduling problem using matrix notation is as

follows in Equations 5.12 to 5.15.

The Condensed General Block Scheduling Problem with by variables

maximize ~cZ (5.12)

s.t. Zi − Zj ≤ 0 ∀(i, j) ∈ I (5.13)

HZ ≤ ~h (5.14)

Z ∈ {0, 1} (5.15)

Where Z is the (|B| × |T | × |D|)× 1 column vector of by variables, as described earlier. There

is one by variable for each block, time period, and destination. Where ~c are the objective

coefficients on the by variables which can be determined from the original values v as follows:

cb,t,d =


vb,t,d − vb,t,d+1 if d < |D|
vb,t,d − vb,t+1,1 if t < T , d = |D|
vb,t,d if t = |T |, d = |D|

(5.16)

Each by variable Z is typically indexed with b, t, d for block, time, and destination, but in

Equation 5.13 a shorthand notation is adopted where i and j simply refer to two different by

variables. I, then, is the total set of all precedence constraints between blocks and all of the

constraints that are required from turning at variables into by variables. I contains the following

three sets of precedence constraints in Equations 5.17 to 5.19.
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Zb,t,|D| − Zb̂,t,|D| ≤ 0 ∀b ∈ B, b̂ ∈ B̂b, t ∈ T (5.17)

Zb,t,d − Zb,t,d+1 ≤ 0 ∀b ∈ B, t ∈ T , d < |D| (5.18)

Zb,t,|D| − Zb,t+1,|D| ≤ 0 ∀b ∈ B, t < |T | (5.19)

Equation 5.17 are the original precedence constraints which connect base blocks (b) mined by

a given period (t) mined to any destination (d = |D|) to the antecedent block (b̂) also mined by

that period and also to any destination. Equation 5.18 links the ‘by’ destinations together, and

Equation 5.19 does the same with the time periods.

In the condensed block scheduling problem Equation 5.14 are all of the capacity constraints,

blending, uncertainty constraints, and everything else that does not amount to a simple

precedence constraint. The H matrix is an (|B| × |D| × |T |)× |h| matrix typically with coefficients

equal to grades or tonnages, corresponding to some right hand side ~h which is the column vector

of right hand sides. As all of these variables are based on the ‘by’ variables it may be first

necessary to apply the rules in Equations 5.9 to 5.11 to translate the constraints which are more

familiar to mine planning engineers.

Finally Equation 5.15 enforces the resource constraints which limit blocks to be mined not at

all, or exactly once.

5.1.3 Example Direct Block Scheduling Results

The outcome from either the at variable or by variable formulation for the block scheduling

problem is ultimately a plan which indicates both when blocks are mined, and to which

destination they are routed. To illustrate some of the most common operational concerns, which

must be addressed by incorporating operational constraints, consider the small synthetic dataset

in Figure 5.1

For this simple 2D dataset there are two possible destinations, the mill and the dump

although these are are not differentiated in the figures. There are three time periods with a

straightforward mining capacity of 300 blocks which are indicated by the three pit contours. The

blocks within the smallest pit contour are mined in period 1, between the smallest and second in

period 2, and between the second and the largest in period 3. Although this dataset is only a

synthetic 2D dataset it illustrates three operational concerns.
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z

Figure 5.1 Synthetic 2D scheduling dataset. Left: the economic value of each block, darker is
higher. Right: A block schedule consisting of three phases

5.1.3.1 Sink Rate

The sink rate of an open pit mine is a limit on the vertical rate of advance that can realistically

be achieved in any given year. Typically an open pit mine may be limited to a maximum of six to

twelve benches a year which is a consequence of, among other things, the number of shovels in use

and the relative cost of developing access to those benches. Incorporating a sink rate into a block

schedule is simple with either at or by variables. Either force the variables corresponding to

blocks of unattainable z values to be zero or don’t generate them in the first place.

x

z

Figure 5.2 Example block schedule for the synthetic 2D scheduling dataset that satisfies a
maximum sink rate operational constraint

In the synthetic example a block schedule that incorporates an eleven bench sink rate is shown

in Figure 5.2. A useful byproduct of enforcing a maximum sink rate is that it can prevent

minimum mining width violations in certain circumstances, although this is not guaranteed.
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5.1.3.2 Minimum Mining Width Constraints

The final pit limits in a operationally feasible block schedule should also satisfy minimum

mining width constraints, for all of the same reasons discussed in Section 4.1. Incorporating

minimum mining width constraints into block scheduling problems is discussed in detail in

Section 5.2.

x

z

Figure 5.3 Example block schedule for the synthetic 2D scheduling dataset that satisfies a
minimum mining width constraint of six blocks

In Figure 5.3 the pit on the right satisfies minimum mining width constraints in the final pit

limit, but each phase individually does not satisfy a minimum mining width. It is possible to

require a suitable operating area at the bottom of each phase and this may be desirable in some

circumstances.

5.1.3.3 Minimum Pushback Width Constraints

A common characteristic of block schedules that do not consider operational constraints are

very small changes between some of the pit walls in between phases. This is evident even in the

synthetic 2D example, specifically along the west wall between phase 1 and 2, where the distance

between the pit walls is only a single block. This is a very poor plan from an operational

perspective because in order to start mining in an area large equipment must be relocated to that

area first, among other preparations, which can take a long time and incur substantial operating

costs. Because shovel movement is not typically considered directly in a long-range plan it should

at least be handled implicitly by precluding these sorts of configurations.
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Figure 5.4 Example block schedule for the synthetic 2D scheduling dataset that satisfies a
minimum pushback width constraint of six blocks

In Figure 5.4 a minimum pushback width of six blocks is specified. A consequence of how this

is currently modeled is that it inherently satisfies minimum mining width constraints as well. In

this synthetic example the optimal answer was, somewhat unexpectedly, to push back the west

wall of the second phase instead of snapping the walls together. This just reiterates the

importance of using optimization methods to incorporate operational constraints when possible,

because the best set of changes may be nonobvious.

Unfortunately this constraint does not translate easily to current optimization approaches in

3D. The first concern is that there needs to be a very large number of constraints, on all blocks in

all phases which can overwhelm all commercial solvers and those developed within this chapter.

However, the second concern is that properly modeling large minimum pushback width

constraints can be very difficult because the block templates do not fit nicely together, and

interact destructively with the precedence constraints and the general shape of nested pits. An

initial formulation for minimum pushback width constraints is presented in the following sections,

but this does not work well in 3D.

5.1.3.4 Additional Operational Constraints

The most impactful operational constraint considered beyond the scope of this dissertation is

bench access. Main haulage ramps, drop cuts, and access roads are part of a very important set of

operational constraints with impacts on economic viability and safety. This dissertation does not

develop any ideas or formulations on this topic.
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Additionally, besides enforcing minimum pushback width constraints, shovel movement and

scheduling is beyond the scope of this dissertation. This extends also to the type of plans that

satisfy minimum mining widths and pushback constraints but still have mining areas separated by

long distances. Integer programming formulations which consider this type of operational

constraint would potentially be very complicated, as they may have to incorporate a connected

components analysis in some form.

Finally, many operational constraints that are more within the realm of short range planning

are not considered. For example, the destinations chosen for each block should satisfy some form

of minimum mining width constraint as well. As mentioned in Section 2.1.4 this particular

operational constraint is generally handled during the short range grade control process, in part

because blast movement of the material should be considered. Incorporating more operational

constraints into a block scheduling problem necessarily reduces value, and will generally increase

computation time, and may lead to currently unmanageable levels of complexity.

5.2 Width Constraints in Block Scheduling Problems

The prior formulation for minimum mining width constraints, Section 4.2.1, naturally extends

to the block scheduling problem with either at or by variables. The fundamental concept of using

an auxiliary variable to represent a set of contiguous blocks which must be treated similarly can

be used directly for both minimum mining width constraints and minimum pushback width

constraints.

5.2.1 Minimum Mining Width Constraints with at Variables

Minimum mining width constraints in the block scheduling problem require that all areas of

the pit must be a part of an operationally feasible area. However, they do not need to all be

mined within the same phase.

For each width w ∈ W with member blocks b̄ ∈ B̄w, as defined in Section 4.2.1, define an

auxiliary variable Mw. Then accounting for destinations (D) and time periods (T ) define the

assignment constraints as in Equation 5.20. And the enforcement constraints as in Equation 5.21.
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Mw −
∑
d∈D

∑
t∈T

Xb̄,t,d ≤ 0 ∀w ∈ W, b̄ ∈ B̄w (5.20)

Xb,t,d −
∑

w̄∈W̄b

Mw̄ ≤ 0 ∀b ∈ B, t ∈ T , d ∈ D (5.21)

Each assignment constraint, Equation 5.20, is no longer as simple as in the ultimate pit

problem because a width, w, may be assigned a value of 1 if its contained block b̄ is mined to any

destination in any time period. The enforcement constraints remain of a similar mathematical

form, however there are many more of them. It may be possible to reduce the number of

enforcement variables by requiring them only on blocks of the last phase, t = |T |, but this is only

applicable in certain datasets, and may lead to minimum mining width violations in some cases.

5.2.2 Minimum Pushback Width Constraints with at Variables

With minimum pushback width constraints the number of auxiliary variables must increase,

because a block must be mined as a part of a operationally feasible area which is all mined within

the same period. Therefore the auxiliary variable will have two indices as Mw,t, w ∈ W, t ∈ T and

the assignment and enforcement constraints follow in Equations 5.22 and 5.23.

Mw,t −
∑
d∈D

Xb̄,t,d ≤ 0 ∀w ∈ W, b̄ ∈ B̄w, t ∈ T (5.22)

Xb,t,d −
∑

w̄∈W̄b

Mw̄,t ≤ 0 ∀b ∈ B, t ∈ T , d ∈ D (5.23)

5.2.3 Minimum Mining Width Constraints with by Variables

The by formulation also simplifies the assignment constraints when enforcing minimum mining

width constraints. It can be useful to think of a by variable as, this block is mined in this period

or any of the preceding periods, or, this block is mined to this destination or any of the previous

destinations. So the assignment constraints and enforcement constraints simply fall out from this

understanding in Equations 5.24 and 5.25.

Mw − Zb̄,|T |,|D| ≤ 0 ∀w ∈ W, b̄ ∈ B̄w (5.24)

Zb,|T |,|D| −
∑

w̄∈W̄b

Mw̄ ≤ 0 ∀b ∈ B (5.25)
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The by formulation therefore simplifies the assignment constraints back to being simple two

‘block’ precedence constraints and vastly reduces the number of enforcement constraints. Only

one enforcement constraint, on the last destination / time period, is necessary because this

variable will be 1 if and only if the block is mined to any destination in any time period.

5.2.4 Minimum Pushback Width Constraints with by Variables

Similar to at variables the number of auxiliary variables for pushback width constraints with

by variables is increased. However the same idea of using the built in ‘or’ interpretation of the by

variables is no longer possible, because this would not properly enforce minimum pushback width

constraints on earlier periods. A possible formulation for minimum pushback width constraints

follows in Equations 5.26 to 5.28.

Mw,1 − Zb̄,1,|D| ≤ 0 ∀w ∈ W, b̄ ∈ B̄w (5.26)

Mw,t − Zb̄,t,|D| + Zb̄,t−1,|D| ≤ 0 ∀w ∈ W, b̄ ∈ B̄w, t > 1 (5.27)

Zb,t,|D| −
∑

w̄∈W̄b

Mw̄,t ≤ 0 ∀b ∈ B, t ∈ T (5.28)

5.3 Applying the Bienstock-Zuckerberg Algorithm

The Bienstock-Zuckerberg algorithm, Section 2.5.4, is the best current known approach to

solving the linear relaxation of the general block scheduling problem with by variables, and can

handle problems that are too large for conventional general purpose linear programming solvers

by taking advantage of the large network substructure. Additionally, there are at least two

approaches to constructing an integer feasible solution once the linear relaxation is identified. The

TOPOSORT heuristic from Chicoisne et al [104], and Aras’ procedure which modifies the BZ

algorithm and adds additional steps [103]. The TOPOSORT heuristic is limited to upper

bounded capacity constraints - and can not handle arbitrary constraints such as blending or lower

bounds on capacity. Aras’ procedure does not restrict the form of any of the side constraints.

The BZ algorithm is generally very performant because it dualizes all of the more general

constraints, Equation 5.14, and uses the pseudoflow algorithm to solve a sequence of constructed

subproblems. The relevant duals are determined by solving a linear master problem which uses

variables corresponding to aggregated collections of many blocks. These aggregated variables are
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constrained to be orthogonal, such that each original variable is in exactly one aggregate.

The BZ master problem follows in Equations 5.29 to Equation 5.32.

maximize ~cV λ (5.29)

s.t. λi − λj ≤ 0 ∀(i, j) ∈ J (5.30)

HV λ ≤ ~h (5.31)

0 ≤ λ ≤ 1 (5.32)

In this matrix notation based representation V is the |λ| × |Z| orthogonal 0,1 matrix which

specifies which Z variables are within each orthogonal pit variable λ. The helper list of

precedence constraints J in Equation 5.30 is the subset of original precedence and by constraints

as in Equations 5.17 to 5.19 that are necessary for the orthogonal aggregates. Equation 5.31 are

all of the original capacities, and other side constraints. The duals on this set of constraints π are

then used in the subproblem.

The BZ sub problem follows in Equations 5.33 to 5.35.

maximize ~cZ − π
(
HZ − ~h

)
(5.33)

s.t. Zi − Zj ≤ 0 ∀(i, j) ∈ I (5.34)

Z ∈ 0, 1 (5.35)

This subproblem can then be solved by taking the dual (yet again) and using pseudoflow. The

solution is then incorporated into V which creates many more orthogonal aggregates.

5.3.1 Operational Constraints in the BZ Algorithm

The formulation for minimum mining width constraints (Section 5.2.3) is well suited for

incorporation into the BZ algorithm. The auxiliary variables Mw fit nicely with the original Zb,t,d

variables, and the assignment constraints (Equations 5.24) are just another set of precedence

constraints, that can be incorporated into both the master problem and subproblem alongside all

the others. A minor concern arises with the enforcement constraints.

In Munoz et al’s review of the Bienstock-Zuckerberg algorithm they state:
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The BZ algorithm is very effective when the number of rows in H and the number of

[additional] variables is small relative to the number of [Z] variables. [102].

This also arises from one of the central tenets in the BZ algorithm. Owing to the totally

unimodular nature of the main precedence constraint submatrix there will be at most |~h| unique

fractional values in the final optimal result which, in the worst case, would all need individual

orthogonal aggregations [101]. This is typically not a major concern, because there are generally

relatively few rows in the H matrix corresponding to the dual multipliers on the capacity,

blending, and similar side constraints. However, the enforcement constraints upset this balance

substantially – because there is an enforcement constraint on every block in every time period for

the minimum pushback width constraint, and even the negative valued blocks require enforcement

constraints owing to potential interactions with the side constraints. This increases the likelihood

of many unique fractional values in the linear relaxation solution which may lead to slower

convergence.

Fortunately some of the earlier evaluated examples considered in Section 4.6 do not exhibit

this worst case. The ultimate pit problem is a special case of the block scheduling problem where

the number of time periods and destinations are one, and there are no side constraints. The

number of unique values in this special case is exactly two (zero and one), but with the addition

of even hundreds of thousands of enforcement constraints the number of fractional values does not

increase substantially. The biggold 3x3 dataset, for example, has 1,411 binding enforcement

constraints at optimality of the 270,000 original enforcement constraints and only 953 unique

fractional values for the 285,000 partially mined blocks.

5.3.2 Example BZ Subproblem with Operational Constraints

The subproblem in the BZ algorithm with by variables for multiple time periods, multiple

destinations, and operational constraints can become very large and must be constructed

carefully. There are multiple sets of precedence constraints consisting of those inherent in the by

variable reformulation, those required to enforce geotechnical stability, and those owing to the

assignment constraints. In order to further explain how these precedence constraints must be

constructed and the overall nature of the subproblem, a small example follows in this section.
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The example block model in Figure 5.5 consists of eight blocks: three on the lower bench and

five on the upper bench. Each of the three lower blocks depends on three blocks in the upper

bench indicated by the directed arcs. The numbers within the blocks are their respective block

indices. In addition, two sets of two blocks for operational constraints (blocks one and two, and

blocks two and three) are indicated with the dashed ellipses.

x

z
1 2 3

4 5 6 7 8

Figure 5.5 A small example block model used to illustrate the BZ subproblem

If each block is allowed to be mined in one of two time periods and routed to one of three

destinations, there are ultimately 8× 2× 3 = 48 individual block nodes in the subproblem. If the

operational constraints are initially ignored the subproblem follows in Figure 5.6. Now for each

block there are six nodes which are notated with a three digit number such that the first digit is

the original block index, the second digit is the time period index and the third digit is the

destination index.

111 112 113 211 212 213 311 312 313

411 412 413 511 512 513 611 612 613 711 712 713 811 812 813

111 112 113 211 212 213

121 122 123 221 222 223 321 322 323

421 422 423 521 522 523 621 622 623 721 722 723 821 822 823

511 611 612 711 712 812

121 221 321

Figure 5.6 The base precedence constraints and block nodes in the BZ subproblem. Source and
sink arcs are omitted.

For example if block one is to be routed to the second destination in the second phase that

means that node 122 (the gray node in Figure 5.6) must be mined. This requires nodes 123, 423,
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523, and 623 to also be mined, which is essentially saying: If block one is to be mined in period

two, then blocks four, five and six must also have been mined by period two, to any destination.

This does not preclude mining those other blocks in earlier time periods or to other destinations,

the precedence constraints just say they must be mined by at least the same time period to any

destination.

One important aspect of the subproblem highlighted by the example is that the by variable

reformulation for multiple destinations increases the size of the subproblem unnecessarily. That

is, the nodes corresponding to destinations of lower index can be combined together into a single

node that takes the value of the maximum valued destination. This is an important optimization

which reduces the size of the subproblem substantially, and is further discussed in several

references [101–103].

When operational constraints are included additional nodes and precedence constraints are

required. For this example if minimum mining width constraints are enforced on the final pit

limits there are two additional nodes that must connect to 123 and 223, and 223 and 323

respectively as shown in Figure 5.7. Additionally in Figure 5.7 the destinations are collapsed into

a single node each.

11X 21X 31X

41X 51X 61X 71X 81X

12X 22X 32X

42X 52X 62X 72X 82X

M1 M2

Figure 5.7 BZ Subproblem with collapsed destination nodes and two minimum mining width
constraints. Source and sink arcs are omitted.
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5.3.3 Integerization

The Bienstock-Zuckerberg algorithm solves the linear relaxation of the direct block scheduling

problem which allows for partially mining blocks and creates inoperable schedules that are not

directly usable for downstream applications. Therefore it is necessary to create integer feasible

schedules through some additional means.

Chicoisne et al propose the TOPOSORT heuristic which uses the linear relaxation result as a

guide to round the partially mined blocks to integer values while respecting some of the original

constraints. Additionally they propose a local search heuristic that is used in combination with

the TOPOSORT heuristic to obtain integer feasible solutions.

Aras describes a procedure for computing an integer feasible solution following the application

of their modified BZ algorithm [103]. In practice their approach works well, and the gap between

the LP solution as computed by BZ and the IP is generally very small.

One potential avenue for future work is to use the BZ algorithm as part of a branch and

bound integerization process. Intelligently selecting the variables to restrict to integer values in

the branching process may allow for higher quality integer solutions although the sheer number of

variables could lead to problems. The orthogonal columns could be retained across levels of the

tree to allow for the master problem to be solved more efficiently without having to start over

from the beginning. This remains to be explored.

5.3.4 Implementation Details

The BZ algorithm can be implemented relatively efficiently in a computer program on top of

two major components: a solver for linear programs that provides dual values on relevant

constraints, and a flow based solver for solving the constructed ultimate pit problem instances.

The difficulty of the implementation is in ensuring that all relevant bookkeeping information is

routed correctly and the master and sub problems are constructed correctly. A prototype

implementation of the BZ algorithm using the Gurobi C++ application programming interface to

solve the master problem and MineFlow to solve the constructed subproblems was developed.

None of the reviewed discussions about the BZ algorithm describe the data structure used to

store the orthogonalized columns. A näıve approach is not recommended as incorporating new

columns from the subproblem and computing the new orthogonalized pits can be a laborious
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process. The partition refinement data structure, [141, 142], is one high quality data structure for

this component of a BZ implementation and can easily be extended to maintain the value of each

orthogonalized pit and all of the information required to create the master problem’s constraints.

The subproblem ultimate pit instances remain the same size throughout the decomposition

process, and relatively few block values are modified by the duals from the previous master

problem solution. Therefore it is important to use a solver that can re-use the previous solution’s

information to more rapidly compute the next.

However the size of the master problem does grow rapidly as additional columns are

incorporated and orthogonalized. In order to prevent the number of columns from reaching

unmanageable levels Bienstock and Zuckerberg propose a coarsification process which, when

necessary, replaces the collection of orthogonal aggregates with some smaller set that spans the

current solution by having only one orthogonal aggregate for each unique value of λ. Special care

must be taken to prevent cycling. Munoz et al suggest only applying this coarsification process on

iterations where the value of the objective (Equation 5.29) strictly increases [102].

Interestingly, this coarsification process did not yield improved convergence in the cases

considered here. Instead when coarsification was applied the process took many additional

iterations that obviated any runtime improvements realized by solving the master problem more

quickly with fewer variables. This process should be considered sparingly perhaps only when the

master problem reaches truly unmanageable levels, or only on those columns that are not a part

of the current best LP solution. Another possible explanation is that the problems considered

herein were not sufficiently sophisticated to necessitate the coarsification process. Problems with

more variables, more constraints, or more difficult types of constraints may benefit from the

coarsification process.

When possible it is generally worth seeding the master problem with a more useful initial set

of orthogonal columns. This includes splitting up all of the blocks by time period, destination,

and potentially even by bench. In some cases this lead to as much as a 50% reduction in run time

compared to beginning with all of the blocks in one single column. Determining the best

strategies for initializing, splitting up, and merging these columns is a ripe area for future

research especially in the context of complicated side constraints.
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5.3.4.1 MineLib Results

The MineLib library of test problem instances contains eleven constrained pit limit problems,

or ‘cpit’ problems, which are a special case of the general direct block scheduling problem [138].

The only side constraint considered in the constrained pit limit problems are resource constraints

as in Equations 5.5 and 5.6. These problems were used to verify the developed prototype BZ

implementation. The problem instances and results are tabulated in Table 5.1 and Table 5.2.

Table 5.1 Summary information of the MineLib ‘cpit’ problem instances.

Name Number of
Blocks

Number of
Precedence
Constraints

Number of
Phases

Number of Side
Constraints

newman1 1,060 3,922 6 12
zuck small 9,400 145,640 20 40
kd 14,153 219,778 12 12
zuck medium 29,277 1,271,207 15 30
p4hd 40,947 738,609 10 20
marvin 53,271 650,631 20 40
w23 74,260 764,786 12 36
zuck large 96,821 1,053,105 30 60
sm2 99,014 96,642 30 60
mclaughlin limit 112,687 3,035,483 15 15
mclaughlin 2,140,342 73,143,770 20 20

The linear relaxation objective value as computed by the prototype BZ algorithm deviate

slightly, by less than 1%, from the reported results in Espinoza et al [138]. Upon closer inspection

this is caused by the provided solution files from MineLib not always adhering to the capacity

constraints precisely. This may be due to inexact tolerances or numerical instability, as many of

the values in the MineLib dataset are large when considered in the context of floating point

numbers, especially when accounting for how the aggregation process sums many value and

tonnage coefficients together. Overall the results from MineLib and the prototype BZ

implementation for the linear relaxation are in agreement and these small discrepancies do not

have a big impact.

The prototype BZ implementation was extended to compute the IP feasible results as well,

and the results are summarized in Table 5.2. In all eleven cases the prototype BZ implementation

was able to find schedules with higher objective value than those reported by MineLib.
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Table 5.2 IP results from applying the prototype BZ implementation to the Minelib ‘cpit’
problem instances.

Name MineLib
Objective

Prototype BZ
Objective

Percent
Improvement

Elapsed
time

newman1 23,483,671 24,176,579 3.0% 9s
zuck small 788,652,600 789,066,986 0.1% 40s
kd 396,858,193 402,485,039 1.4% 16s
zuck medium 615,411,415 618,075,337 0.4% 1m 22s
p4hd 246,138,696 247,089,680 0.4% 39s
marvin 820,726,048 822,163,289 0.2% 38s
w23 392,226,063 393,068,316 0.2% 2m 26s
zuck large 56,777,190 56,846,147 0.1% 14m 24s
sm2 1,645,242,774 1,647,879,436 0.2% 12m 32s
mclaughlin limit 1,073,327,197 1,075,862,841 0.2% 3m 4s
mclaughlin 1,073,327,197 1,075,930,704 0.2% 10m 37s

The prototype BZ implementation uses a combination of Aras’s approach and the

TOPOSORT heuristic to solve for the final integer feasible result. The orthogonal aggregates are

pre-seeded by bench, phase, and a few nested pits calculated without any side constraints before

calculating the linear relaxation result. At this stage the TOPOSORT heuristic is applied to

compute a high quality satisfying result, but is not taken as the final answer. This solution is

orthogonalized into the original aggregates and the whole set of columns is handed off to Gurobi

to compute the final integer feasible solution. In the largest MineLib example, mclaughlin, this

final IP had over 30,000 columns which is far less than the original 2, 140, 342× 20 = 42, 806, 840

nodes. In practice this combined approach performs well.

5.4 Case Studies

The proposed methodology is applied to a small 3D example with three phases and the well

known McLaughlin gold deposit with three destinations and ten phases. Note that although the

name is shared, this McLaughlin dataset is subtly different than the one included in MineLib.

5.4.1 Small 3D Example

This small example was first used in Dağdelen 1985 [27]. The model is a synthetic, small, high

grade copper deposit with 5,400 blocks arranged in a 30× 30× 6 regular block model. Each block

measures 100× 100× 45 feet. The model contains 64 blocks of ore with an average grade of 3.7%
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copper content. A three time period schedule is sought with capacities of 19 ore tons in the first

period, 21 ore tons in the second, and 24 ore tons in the third.

Dağdelen’s schedule, as computed with nine rounds of discounting block values, achieves a

NPV of $139,569 without operational constraints. The prototype BZ implementation, without

operational constraints, achieves a NPV of $140,660. With minimum mining width constraints

corresponding to 2× 2 blocks, the NPV is reduced to $138,527, and with 3× 3 minimum mining

width constraints the NPV is reduced to $134,536. Planar sections through the schedules are

given in Figure 5.8.

5.4.2 McLaughlin Dataset

The McLaughlin mining complex is simple, with three possible destinations for each block: a

mill, a leach pad, and a waste dump. The economic parameters used in this case study are carried

over from Aras, [103], and tabulated in Table 5.3.

Table 5.3 Economic parameters used in the McLaughlin case study. Same as Aras 2018 [103].

Parameter Value

Gold price 1,250 $/oz
Mill cost 12 $/t
Leach cost 6 $/t
Mill recovery 90%
Leach recovery 70%
Discount rate 12.5%

The first step is to compute the original ultimate pit limits using MineFlow. For the ultimate

pit limit the discount rate is not used and each block is assumed to be routed to the highest value

destination. No capacity constraints or other side constraints are considered, and for this first

calculation no operational constraints are included. The näıve ultimate pit is shown in Figure 5.9,

it mines only 258,054 of the 2,847,636 input blocks and achieves an undiscounted value of $2.2

billion with these parameters and assumptions. Constant 45° precedence constraints using eight

benches of arcs were used.

The ultimate pit with minimum mining width constraints was also calculated using the

bounding procedure and the methodology developed in Chapter 4. For this case study the

ultimate pit satisfying a 5x5 minimum mining width reduces the contained undiscounted value by
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$10 million and reduces the overall size of the pit by 3,225 blocks. This reduction in value

represents bringing the unrealistic original value closer to an actually attainable value.

The blocks within the mining width feasible ultimate pit were extracted and used for the

direct block scheduling procedure using the prototype Bienstock-Zuckerberg algorithm built on

Gurobi and MineFlow. The process capacities, which form the main side constraints, for each

period were taken from Aras 2018 and are tabulated in Table 5.4.

Table 5.4 Process capacity by time period. Same as Aras 2018 [103].

Time Period Mill Capacity (Tons) Leach Capacity (Tons)

1 1,500,000 1,500,000
2 1,750,000 1,750,000
3 2,000,000 2,000,000
4 2,750,000 2,750,000
5 3,000,000 3,000,000
6 3,000,000 3,000,000
7 2,750,000 2,750,000
8 2,000,000 2,000,000
9 1,750,000 1,750,000
10 1,500,000 1,500,000

With these 20 side constraints and no operational constraints the overall NPV of the project

as computed with the prototype BZ implementation is $1,485,402,500. The Linear relaxation has

a value of $1,489,951,000 for a gap of roughly half of one percent. Adding a 5x5 minimum mining

width constraint reduces the NPV to $1,484,989,000 but increases the compute time from five

minutes and eight seconds to 53 minutes and 24 seconds. Cross sections of both of these results

are shown in Figure Figure 5.10.

In this dataset the negative valued waste blocks are relatively low compared to the ore blocks,

and it is more economical to expand the pit in most areas to satisfy minimum mining width

constraints. Additionally, once the pit has already been expanded to satisfy minimum mining

width constraints additional areas become economic to recoup some of that cost. That is not

generally to be expected in all datasets.
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5.5 Discussion

This chapter has extended the operational constraints described in Chapter 4 to the direct

block scheduling problem for both at and by variables. Schedules can now be constructed that

satisfy minimum mining width using the Bienstock-Zuckerberg algorithm and associated methods.

Additionally a prototype BZ implementation which takes advantage of recent advances in BZ

understanding was developed and applied to the MineLib series of problems computing higher

valued solutions in all eleven cases. Further efforts on this solver, with and without operational

constraints, is warranted.

Many other applications to large scale open-pit mine planning and scheduling problems are

possible with some of the efforts described in this chapter.
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Figure 5.8 Planar sections through three schedules computed with Dağdelen’s data. Left: No
operational constraints, Middle: 2× 2 minimum mining width constraints, Right: 3× 3 minimum
mining width constraints. Top: Bench five, Middle: Bench three, Bottom: Bench one
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Figure 5.9 A 3D overview of the McLaughlin area of interest. Left: Original topography. Right:
Näıve ultimate pit.

y
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z

Figure 5.10 Cross sections through the McLaughlin block schedules, lighter blocks are mined
earlier. Top: No operational constraints, Bottom: 5x5 minimum mining width.
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CHAPTER 6

CONCLUSIONS

The main contribution of this dissertation is a methodology and program for solving the

ultimate pit problem with minimum mining width constraints, however contributions were also

made to the original ultimate pit problem and the block scheduling problem. The specific

structure of the ultimate pit problem allows for modest optimizations to the conventional

pseudoflow algorithm. The ultimate pit problem with minimum mining width constraints is now

within reach even for very large models with dozens of millions of blocks and hundreds of millions

of constraints. High quality solutions can be calculated very rapidly using the bounding

procedures developed herein along with the Lagrangian relaxation guided solver. And finally,

flexible formulations for the block scheduling problem with operational constraints alongside an

initial prototype BZ solver capable of solving realistic models were presented. Each of the main

contributions are summarized here, followed by ideas for future work, and final comments.

6.1 An Improved Ultimate Pit Solver – MineFlow

The ultimate pit problem remains a relevant problem in long range open-pit mine planning,

either as a standalone problem in the early stage of the project or as a subproblem in more

complicated optimization procedures or design applications. Solving for the ultimate pit as

quickly as possible is a worthwhile goal that benefits both academia and industry alike.

MineFlow, developed in Chapter 3, is a strong contender for the fastest ultimate pit solver

currently available, taking advantage of several important optimizations that are possible

specifically in the ultimate pit problem where only the minimum cut is desired and all arcs are of

a similar form. The notation developed in this chapter should also be of moderate pedagogical

value for those interested in solving for ultimate pits with pseudoflow. The software, which is

readily available online or from the author, should continue to prove to be an important and

useful tool for open-pit mine planning.

Additionally this chapter saw the development of useful ideas on how best to generate and

evaluate precedence constraints with a heavy emphasis on efficiency and accuracy. The

importance of changing the conventional paradigm from generating all precedence constraints
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before solving into starting the solve immediately and only generating precedence constraints as

necessary was also highlighted.

Future work on this topic could be to evaluate the recent work from Chen et al in 2022 that

describe an algorithm for determining the maximum flow in near-linear time. Although there may

be challenges with creating a workable implementation, some of the ideas may translate into the

currently more practical methods. Additionally there may be room for further developments by

switching between a depth first and breadth first strategy for incorporating precedence

constraints that leads to normalized trees of higher quality with less splitting operations. This

could have a tangible impact on the overall solution time.

6.2 Ultimate Pit Problem with Minimum Mining Width Constraints

Incorporating minimum mining width constraints directly into the ultimate pit optimization

process is of the utmost importance in the early stages of long-range open-pit mine planning.

Ignoring these constraints leads to unrealistic pits which overestimate the value of any given

mineral deposit. These unrealistic pit values can lead to costly suboptimal decisions, and

unwelcome surprises during the manual design and refinement process later.

This chapter saw the development of a concise, simple, and powerful formulation for the

ultimate pit problem with minimum mining width constraints and several viable solution

approaches. An extensive computational comparison was completed in order to validate that the

work described in this chapter is actually applicable to a wide range of realistic datasets and

deposits.

Additionally, methods were developed to generate inner and outer bounding pits which vastly

reduce the size of the problem. This is necessary because it is shown that the ultimate pit

problem with minimum mining width constraints is NP-complete, which is a valuable result for

future researchers looking to incorporate operational constraints into their open-pit mine planning

problems. This result helps to protect future researchers from spending fruitless efforts trying to

develop a polynomial time approach specifically for this problem.

Future work on the ultimate pit problem with minimum mining width constraints could be

focused on improved heuristics, or even a completely different formulation that has different

useful characteristics. The Lagrangian relaxation guided approach contains a step which evaluates
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‘nearby’ satisfying pits in an effort to generate higher valued solutions that do not immediately

fall out of the iterative process. This step deserves additional effort to improve its speed and its

ability to generate high quality nearby solutions.

The Bienstock Zuckerberg algorithm, when combined with the Lagrangian relaxation guided

solver, proved to generate the best result in all cases evaluated.

Finally, although the commercial branch and bound based optimizers were unable to make

much headway on the larger models, their abilities on the smaller models are promising and

perhaps combining the approaches developed in this chapter with the commercial solvers would

be useful. For example, the approaches developed herein could be used to provide so called MIP

starts, or additional bounding information, which could lead to a higher quality results faster.

6.3 The Block Scheduling Problem with Operational Constraints

The block scheduling problem is far more complicated than the single time period ultimate pit

problem, but also more realistic and potentially more useful. Formulations for incorporating

operational constraints, including minimum mining width constraints and minimum pushback

width constraints, were developed in Chapter 5 for the most common variable types.

Additionally, a prototype Bienstock Zuckerberg based solver was developed using Gurobi for the

master problem and MineFlow for the sub problem. This solver takes advantage of the nature of

the operational constraints and provide operationally feasible block scheduling solutions rapidly.

Future work for the block scheduling problem with operational constraints may include efforts

to create even more operationally realistic schedules that account for such concerns as bench

access. Formulations for these additional operational constraints are expected to be quite

complicated. Additionally, methods for further enhancing the Bienstock Zuckerberg algorithm

could be considered. Strategies for managing the orthogonal columns more effectively to balance

the time spent solving the master problems versus the overall convergence rate should be

investigated.

6.4 Final comments

In this dissertation a computationally efficient and flexible approach to incorporating

minimum mining width constraints into the ultimate pit problem was presented alongside modest

161



improvements to the pseudoflow algorithm. These approaches were evaluated on real world

datasets and their suitability was demonstrated. An initial exploration of operational constraints

in the direct block scheduling problem was completed. The ultimate pit problem with minimum

mining width constraints was shown to be NP-complete. Finally, several smaller contributions: a

useful notation for the pseudoflow algorithm, an algorithm for the two dimensional ultimate pit

problem with minimum mining width constraints, a means to evaluate the accuracy of a given

precedence pattern, and a dynamic programming algorithm for selecting evenly spaced pushbacks

following parametric analysis, complete the dissertation.

The work completed herein can be used to assist long range open-pit mine planning engineers

to more efficiently and responsibly use the Earth’s natural resources.
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[32] Kadri Dağdelen. Cutoff grade optimization. Preprints-Society of Mining Engineers of
AIME, 1993.

[33] Kenneth F Lane. The economic definition of ore: cut-off grades in theory and practice.
Mining Journal Books London, 1988.

[34] Jeff Whittle. A decade of open pit mine planning and optimization-the craft of turning
algorithms into packages. Proceedings of the APCOM 99 symposium, 1999.

[35] I Isaaks, E. Treloar and T Elenbaas. Optimum dig lines for open pit grade control. In
Proceedings of Ninth International Mining Geology Conference 2014, pages 425–432. The
Australasian Institute of Mining and Metallurgy: Melbourne, 2014.

[36] K.P. Norrena Neufeld, C.T. and C.V. Deustch. Guide to geostatistical grade control and dig
limit determination. Guidebook Series, 1:63, 2005.

[37] M Tabesh and H Askari-Nasab. Automatic creation of mining polygons using hierarchical
clustering techniques. Journal of Mining Science, 49(3):426–440, 2013.

[38] Matthew Deutsch. A branch and bound algorithm for open pit grade control polygon
optimization. Proc. of the 19th APCOM, 2017.

[39] Louis Caccetta and Stephen P Hill. An application of branch and cut to open pit mine
scheduling. Journal of global optimization, 27(2-3):349–365, 2003.

[40] Matthew Deutsch, Eric Gonzalez, and Michael Williams. Using simulation to quantify
uncertainty in ultimate-pit limits and inform infrastructure placement. Mining Engineering,
67(12), 2015.

[41] AD Mwangi, Zh Jianhua, H Gang, RM Kasomo, and MM Innocent. Ultimate pit limit
optimization methods in open pit mines: A review. Journal of Mining Science, 56(4):
588–602, 2020.

165



[42] Karo Fathollahzadeh, Mohammad Waqar Ali Asad, Elham Mardaneh, and Mehmet Cigla.
Review of solution methodologies for open pit mine production scheduling problem.
International Journal of Mining, Reclamation and Environment, 35(8):564–599, 2021.

[43] David Muir. Labeling lerchs-grossmann revisited with billion block model. preprint on
webpage at researchgate.net/publication/
340316084 Labeling Lerchs-Grossmann revisited with Billion Block Model, 02 2020.

[44] Thys B Johnson. Optimum open pit mine production scheduling. PhD thesis, California
Univ Berkeley Operations Research Center, 1968.

[45] Robert Underwood and B Tolwinski. The lerchs grossmann algorithm from a dual simplex
viewpoint. 26th Proceedings of the Application of Computers and Operations Research in
the Mineral Industry, pages 229–235, 1996.

[46] Dorit S Hochbaum. A new-old algorithm for minimum-cut and maximum-flow in closure
graphs. Networks, 37(4):171–193, 2001.

[47] Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

[48] Jean-Claude Picard. Maximal closure of a graph and applications to combinatorial
problems. Management science, 22(11):1268–1272, 1976.

[49] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows. Cambridge,
Mass.: Alfred P. Sloan School of Management, Massachusetts . . . , 1988.

[50] Lester Randolph Ford and Delbert Ray Fulkerson. Flows in networks. Princeton university
press, 1962.

[51] Steven Skiena. Implementing discrete mathematics: combinatorics and graph theory with
Mathematica. Addison-Wesley Longman Publishing Co., Inc., 1991.

[52] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

[53] Boris V Cherkassky and Andrew V Goldberg. On implementing the push—relabel method
for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[54] Dorit S Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow
problem. Operations research, 56(4):992–1009, 2008.

[55] Dorit S Hochbaum and James B Orlin. Simplifications and speedups of the pseudoflow
algorithm. Networks, 61(1):40–57, 2013.

166

researchgate.net/publication/340316084_Labeling_Lerchs-Grossmann_revisited_with_Billion_Block_Model
researchgate.net/publication/340316084_Labeling_Lerchs-Grossmann_revisited_with_Billion_Block_Model
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APPENDIX A

THE ULTIMATE PIT PROBLEM WITH MINIMUM MINING WIDTH CONSTRAINTS IS

NP-COMPLETE

Efficient algorithms exist to solve many different computational problems such as finding the

shortest path through a graph, sorting large arrays, and solving the ultimate pit problem. In

Section 2.2.3 a straightforward means by which the ultimate pit problem can be transformed into

a max-flow / min-cut problem was described. This transformation can then be used with a wide

range of algorithms, such as the pseudoflow algorithm, to obtain solutions quickly. These

algorithms can obtain the solution in a number of steps which can be expressed as a polynomial

in terms of the size of the input, and are therefore reasonably fast even as the problem size

increases. Problems of this sort are said to be in P, and there exist algorithms to solve them with

a deterministic Turing machine in polynomial time.

It would be convenient if the ultimate pit problem with minimum mining width constraints

could also be solved in polynomial time, however the reduction described in this appendix shows

that this is not currently possible. Following this result it can only be declared that there is

currently no known polynomial time algorithm for this problem, which is a useful theoretical

result with some practical ramifications. Specifically this result places the ultimate pit problem

with minimum mining width constraints among the NP-complete problems which can only be

solved by a non-deterministic Turing machine in polynomial time. It is not yet known if there is a

algorithm that could solve this class of problems in polynomial time. This is a long-standing open

problem commonly referred to as the P vs. NP problem, which is not considered here.

It is now known that the heuristic methods described in Chapter 4 are not going to be

obviated by a clever reformulation of the problem into a pre-existing graph problem or something

similar. If a clever trick existed to solve our problem in polynomial time it would also be able to

solve all these other, much more heavily researched, problems as well.

The argument presented herein centers around showing that it is possible to transform an

arbitrary 3-SAT problem into the ultimate pit problem with minimum mining widths. With this

polynomial time reduction one can confidently say that if there were a very fast algorithm for the
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ultimate pit problem with minimum mining widths there would also have a very fast algorithm

for 3-SAT. One could take a 3-SAT problem, transform it using this process, solve that efficiently,

and report back the answer.

The reduction described in this appendix modifies the reduction given by Fowler, Paterson,

and Tanimoto in 1981 for the planar geometric covering problem where the goal is to determine

whether some set of geometric objects can completely cover another set of points in the plane

[143]. The primary difference between Fowler et al’s reduction and this reduction is that in Fowler

et al the goal was to limit the number of geometric shapes used, which roughly correspond to

mining width sets. In the ultimate pit problem with minimum mining width constraints there is

no restriction on the number of mining width sets. This reduction retains the character of their

idea by embedding the entire problem in a plane of negative valued blocks but must contend with

additional complications.

Section A.1 describes the 3-SAT problem which is a special case of the well known

satisfiability problem. Section A.2 then strips away all of the nonvital elements of the ultimate pit

problem with minimum mining width constraints. Specifically the precedence constraints are

completely removed and the problem is transformed into a decision problem instead of an

optimization problem. Finally, Section A.3 provides the polynomial time reduction from 3-SAT

which yields the desired result.

A.1 3-SAT

3-SAT is a special case of the Boolean satisfiability problem; or SAT, which was the original

problem shown to be NP-complete [144]. Satisfiability is the problem of determining whether

there is an assignment of values (true or false) to a set of Boolean variables which satisfies all the

clauses of a particular formula in conjunctive normal form. Formulas in conjunctive normal form

are expressed as a conjunction of disjunctions, or an ‘and’ of ‘or’s. In the 3-SAT special case these

disjunctions consist of exactly three distinct literals. SAT formulas, with disjunctions of any

length, can be transformed easily into 3-SAT instances although the details are not relevant here.

An example 3-SAT formula, φ, follows in Equation A.1. Each Boolean variable is indexed

from the set of n Boolean variables X, as x1, x2, ..., xn. In this small example n is equal to five.

Each clause, indexed from the set of m clauses C, as C1, C2, ..., Cm, is a disjunction of three
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literals formed from those variables. This example has eight clauses the first of which is given as

C1 = (x1 ∨ x2 ∨ ¬x3). This implies that in order for clause one to be satisfied at least one of the

following is true: x1 is assigned true, x2 is assigned true, or x3 is assigned false. The ∨ symbol

stands for ‘or’ and the ¬ symbol is the negation operator. The remaining seven clauses are joined

with C1 with the ∧ operator which means ‘and.’

φ =(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)∧
(x1 ∨ ¬x2 ∨ ¬x5) ∧ (¬x1 ∨ x3 ∨ ¬x4)∧
(x1 ∨ ¬x3 ∨ x5) ∧ (x1 ∨ ¬x4 ∨ x5)∧
(x2 ∨ x4 ∨ x5) ∧ (¬x3 ∨ x4 ∨ ¬x5) (A.1)

The 3-SAT instance in Equation A.1 is satisfiable. For example assigning the following values

to each variable, where 1 is true and 0 is false, satisfies all eight clauses. x1 ← 1, x2 ← 0, x3 ← 1,

x4 ← 1, x5 ← 0.

A great many problems can be specified with this seemingly restrictive set of rules including

the well known vertex cover problem and graph coloring problem. It is straightforward to

transform many problems into 3-SAT problems so a fast 3-SAT algorithm is highly sought after.

However, being able to transform arbitrary problems into 3-SAT, or more general satisfiability

problems clearly does not mean that the input problem is difficult. Instead if a problem is meant

to be shown to be NP-complete it must be shown that any arbitrary 3-SAT problem can be

turned into an instance of that problem in polynomial time.

3-SAT is not an optimization problem and does not aim to maximize or minimize some

objective function, although such variants do exist. Instead 3-SAT is a decision problem which

only results in a yes or a no; the formula is satisfiable or not satisfiable. It is straightforward to

transform an optimization problem into a series of decision problems. The general idea is to first

solve the problem without the objective constructing a feasible solution, then if the solution exists

proceed by introducing clauses which force the new objective value to exceed the previous

objective value by some amount (if maximizing). This constructs a new decision problem which

asks if a better result exists. If there is no satisfying solution then an upper bound on the

objective has been determined which can be used to refine the working decision problem until the

optimal solution is found.
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A.2 The Simplified Operational Ultimate Pit Decision Problem in the Plane

It is sufficient to show that a simplified version of the ultimate pit problem with minimum

mining width constraints is NP-complete because any algorithm capable of solving the

unsimplified version would also have to solve the simplified version. Therefore it is possible to

completely ignore precedence constraints and turn the problem into a two dimensional planar

problem of identifying mineable groups of blocks. The valid mining width sets are restricted to

3x3 sets of blocks2 and the problem is formulated as a decision problem.

x

y
-2 -1 0 2 2 0 -2 -2 -3

-1 -3 0 -1 1 2 -4 -7 -2

0 1 4 2 -1 -4 -5 -6 -4

1 2 -3 2 1 5 3 -4 -5

-5 -4 2 -2 3 1 -2 -1 -3

-3 -2 -1 2 -4 1 -1 3 -2

-2 9 2 -1 2 3 -2 -4 -2

-2 -1 -2 -2 -1 0 1 -2 -4

-2 -1 0 2 2 0 -2 -2 -3

-1 -3 0 -1 1 2 -4 -7 -2

0 1 4 2 -1 -4 -5 -6 -4

1 2 -3 2 1 5 3 -4 -5

-5 -4 2 -2 3 1 -2 -1 -3

-3 -2 -1 2 -4 1 -1 3 -2

-2 9 2 -1 2 3 -2 -4 -2

-2 -1 -2 -2 -1 0 1 -2 -4

Figure A.1 Example simplified operational ultimate pit decision problem in the plane. Numbers
in blocks are the EBV. If the requested lower bound is less than 28 the set of shaded blocks on
the right is a valid selection corresponding to a ‘yes’ answer to the decision problem.

Given a 2D planar cross section through a regular block model of size nx by ny with integral

economic block values for each block as vx,y, and a single scalar lower bound on total value V ; we

seek an assignment Xx,y of either 1 or 0 to each block such that the total value exceeds the lower

bound (Equation A.2) and each mined block is a part of at least one 3x3 square of mined blocks.

A small 9× 8 example is shown in Figure A.1.

nx−1∑
x=0

ny−1∑
y=0

vx,yXx,y ≥ V (A.2)

2It is possible that the 2x2 and 2x3 cases are also NP-complete - however that is not shown in this appendix.
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A.3 The Ultimate Pit Problem with Minimum Mining Width Constraints is
NP-Complete

Theorem 1. The Ultimate Pit Problem with Minimum Mining Width Constraints is

NP-complete.

Proof. A polynomial-time reduction of 3-SAT to the simplified ultimate pit problem with

minimum mining width constraints is given. A 3-SAT formula with N variables and M clauses is

encoded into a 2D grid of size O(M)×O(N) with mining width sets of size 3× 3. Additionally a

value V is provided such that this value can be achieved if and only if it is possible to satisfy the

input formula.

At a high level the reduction involves representing each of the input variables as a ‘wire’

formed from large positive valued blocks embedded in a predominantly negative valued block

model slice. Each wire is constructed as a loop consisting of an even number of high value blocks

which have exactly two possible maximum valued solutions. The two parities correspond to

assigning a value of true or false to the input variable in the satisfiability formula.

Each wire is then carefully attached to specific clause points following the input 3-SAT

formula. The clause points are constructed such that there are exactly seven maximum valued

solutions corresponding to one, or more, of the three Boolean variables being true. That is, only

the solution where all three variables are false has a lower value than the seven others.

For clauses where a particular variable appears in its negated form it is necessary to flip the

parity of the wire before it enters the clause point. It is also necessary to cross wires over one

another in the plane strictly maintaining the parity of each wire. The following sections describe

each of these individual components before showing how to connect them all together and

complete the construction.

In all the following examples and figures the numbers within blocks are the economic block

value. The hatched blocks have a very large negative value, for example -9,999, which completely

removes the possibility of mining those blocks. They could also be removed from the problem.

The dark shaded blocks are the mined blocks within each solution.
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A.3.1 Wires

In Figure A.2 we see an example wire. It is straightforward to see that each of the two

maximum valued solutions have the same value (in this case 344), and vitally these are the only

two solutions which have a value of 344. Any other configuration of mined blocks would

necessarily mine additional negative valued blocks and reduce the value, so if a solution is sought

with a value of at least 344 the answer will be ‘yes’ with one of these two outputs. It is possible to

extend the wire either horizontally or vertically by inserting additional rows and columns

provided they follow the pattern.

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure A.2 The wire concept in the NP-completeness proof. Each of the two solutions (left and
right) have the same value and correspond to the two possible assignments (true and false).

A useful schematic representation for this wire is given in Figure A.3. In this representation

the high value blocks are represented as nodes. Arcs are present between nodes if it is possible to

place a 3x3 mining width and mine both nodes, and in these examples the bolded arcs correspond

to mining width sets that are mined in a particular solution.

Figure A.3 The wire in Figure A.2 as a schematic instead of explicit block values. Bolded arcs
correspond to mined mining width sets in the equivalent solutions.
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A.3.2 Negation

Wires are constructed such that they always have exactly two equivalent parities with identical

objective function values. These parities correspond to assigning the relevant input variable from

the original 3-SAT problem a true or false value. However, when a variable is negated in a clause

it must ‘appear’ to that clause as the other parity. This section, therefore, demonstrates how to

negate a wire and have the parity appear different on either side of the negation.

A negation in a wire can be constructed by increasing the length of a wire by incorporating a

wiggle. This is best understood by example as in Figure A.4. The top wire in is the same as in

Section A.3.1 just extended horizontally. The bottom wire incorporates a wiggle to swap the

perceived parity of the wire.

-1 -1 -1

-1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 -1 -1 -1 -1 -1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1 -1 -1 -1 -1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure A.4 A negation ‘wiggle’ incorporated into a wire. The top wire has exactly two parities
(only one is shown) that appears the same on both sides. The bottom wire also has exactly two
parities (again only one is shown), but the parities appear different on either side of the wiggle.
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A.3.3 Crossovers

It is also necessary to cross wires over one another in order to connect them to various clause

points and correctly encode the 3-SAT problem into the ultimate pit problem with minimum

mining width constraints. The crossover is quite simple. The only concern is to ensure that the

parity of the wires can not change which is achieved by using higher negative valued blocks at the

point of the crossover and precluding certain possibilities of ‘sharing’ any negative value between

mining width sets.

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 25 -1 25 -1 25 -1 25 -1 -1

-1 -1 -1 -1 -1 -1

-1 25 -1 -1 -1 -1 25 -1

-1 -1 -1 -1 -1 -1

-1 -1 25 -1 -1 -1 -1 25 -1 -1

-1 -1 -1 -1 -1 -1 -9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -9 -1 -1 -1 -1 -1 -1 -1 -1
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Figure A.5 A configuration demonstrating how to cross wires over other wires. The extra negative
valued blocks next to the circled crossover points ensure that the parity of each wire is retained.
Only two of the four possible solutions are shown alongside the relevant schematic.

The configuration in Figure A.5 has four equal valued solutions, one for each assignment of

true or false to each of the two variables. Only two of the solutions are shown, alongside the

relevant schematic representations. The other two solutions are similar.
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A.3.4 Clause point

The clause point is the most complicated part of the construction and deviates the most from

Fowler et al’s construction. The general idea is to bring three wires corresponding to three

variables into close proximity and overlap them in such a fashion that there are exactly seven

maximum valued solutions corresponding to the cases where at least one of the wires is ‘true’. It

is essential that none of these configurations is preferred over the others, and that the parity of

each wire must not switch in the overlapping section. This is achieved by using specially chosen

block values that increase or decrease blocks within overlapping mining widths.
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-1 -1 25 -1 25 -1 -1

-1 -1 -1

-1 -1 -1

Figure A.6 An example clause point consisting of three small wires brought close together around
the circled clause point. The shown solution is suboptimal, and does not capture the one unit of
value available in the circled clause point.

An example clause point is shown in Figure A.6. The solution in Figure A.6 is not an optimal

solution; only obtaining a total value of 687 in this case. There are seven optimal solutions which

obtain a total value of 688, capturing the extra point of value available in the circled node. These

solutions are shown in Figure A.7.

A commercial integer programming solver, in this instance Gurobi [140], was used verify that

the example configuration has the necessary characteristics. Similar to the wire example in

Section A.3.1 the wires associated with the clause point can be extended simply and used in the

full construction that follows.
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Figure A.7 The seven optimal solutions for the simple clause point example corresponding to the
three cases where one variable is true (top row), three cases where exactly two variables are true
(middle row), and when all variables are true (bottom).

A.3.5 Entire Construction

In the full construction multiple copies of the preceding components are combined together to

fully transform the input 3-SAT problem into an ultimate pit problem with minimum mining

width constraints. There are two sections in the full construction: the variable bus which

traverses along the top of the region containing the wires for each variable, and the clause region

which contains the M clause points. For each clause point the three relevant variables are

diverted from the bus, crossed over any intervening variables, possibly negated, and then used to

form a clause point.
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Variable Bus

Clause Region
M clause points

N wires

Figure A.8 An overview of the construction used to transform a 3-SAT problem into an ultimate
pit problem with minimum mining width constraints.

In Figure A.8 the entire construction is shown in schematic form. The variable bus contains

the N wires associated with the N input variables. The height of the variable bus region is linear

with respect to the number of input variables as each wire only needs enough space to turn

around on both ends and not interfere with the other wires.

The clause region then contains the M clause points associated with the M clauses, and is a

constant height in order to accommodate the clause point itself and a possible wiggle to negate

the incoming wires. The width of this region is linear with respect to the number of input clauses,

and the entire area occupies a O(M)×O(N) region that is predominantly large negative values.

The precise arithmetic required to determine the lower bound V is tedious, but poses no

major problems. Each component of the construction could be modified to fit into a regular 2D

grid with block values adjusted to maintain a very low optimal value such that the clause points

themselves are the only possible sources of value to the solver. In any case the entire construction

can be constructed in O(M ×N) time, even though it is quite intricate. This completes the proof

that the ultimate pit problem with minimum mining width constraints is NP-Complete. �
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APPENDIX B

SELECTING EVENLY SPACED PUSHBACKS FOLLOWING PARAMETRIC ANALYSIS

Applying parametric analysis in open pit mine planning, with or without minimum mining

width constraints,3 suffers from a specific challenge called the ‘gap problem’. Unfortunately not

to be confused with one of the other homonymous gap problems in open-pit mining, this

particular gap problem refers to the tendency for the contained tonnage of nested pits to vary in

an unpredictable, nonlinear manner. Given an economic block model a series of nested pits can be

calculated by incorporating a Lagrangian relaxation of a total tonnage constraint ΣXb ≤ T , as

originally proposed by Lerchs and Grossmann, or a number of other methods described previously

in Section 2.1.4. The nested pits are then commonly used to help with approximate scheduling

and a wide range of other tasks. However, crucially, most tasks do not rely on using all of the

nested pits and instead a smaller subset of nested pits is desired.

In general the desired subset of nested pits are used to approximate yearly production volumes

often called pushbacks. The process of selecting pushbacks has historically been accomplished by

hand by observing the pit-by-pit graph, or a spreadsheet, and manually choosing which pits to

carry forward in downstream analysis. This appendix presents a novel, automated, dynamic

programming approach to selecting pushbacks that minimizes the squared tonnage differences

between subsequent pushbacks. This removes the tedious and error-prone manual process and

permits for extended automated analysis especially in cases where uncertainty is to be explicitly

understood.

In Figure B.1 and Table B.1 we see the nonlinear nature of a typical pit by pit graph and the

output of the algorithm developed in this appendix. The example problem has 40 pits, along with

the ‘mine-nothing’ case with zero tonnage. In this example we are selecting for five pushbacks,

however this is an input parameter. The pit numbers 3, 11, 33, 39 and 40 are approximately

evenly spaced by tonnage but not by pit number.

3If minimum mining width constraints are used then the pits will not necessarily be nested entirely within one another.
This is not addressed by this procedure.
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Table B.1 Table of pit numbers and tonnages following parametric analysis. Tonnage differences
between both pits and selected pushbacks are included. Shaded rows indicate pits serving as
pushbacks.

Pit Number Tonnage Tonnage Increase Tonnage Increase By Pushback

0 0 0 -
1 72514 72514 -
2 72516 2 -
3 73622 1106 73622
4 74433 811 -
5 75278 845 -
6 76333 1055 -
7 76361 28 -
8 77661 1300 -
9 77753 92 -
10 78594 841 -
11 147011 68417 73389
12 148862 1851 -
13 149680 818 -
14 150488 808 -
15 151107 619 -
16 152791 1684 -
17 163523 10732 -
18 164470 947 -
19 168442 3972 -
20 170581 2139 -
21 171515 934 -
22 171569 54 -
23 173986 2417 -
24 175824 1838 -
25 177175 1351 -
26 184820 7645 -
27 187615 2795 -
28 189550 1935 -
29 191013 1463 -
30 191623 610 -
31 195092 3469 -
32 199770 4678 -
33 202118 2348 55017
34 208858 6740 -
35 211074 2216 -
36 212883 1809 -
37 215546 2663 -
38 245463 29917 -
39 259233 13770 57115
40 357304 98071 98071
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Figure B.1 An example pit by pit graph with the selected, evenly spaced, pushbacks indicated
with darker bars.

Although the tonnage differences between pushbacks do vary quite widely, from as low as

55,017 to up to 98,071, there is no better subset of pits to serve as pushbacks. Any change in the

selected pushbacks will increase the overall tonnage differences between pushbacks and leads to a

worse result which is less appropriate for downstream processes.

Before discussing the algorithm in detail, it is important to understand where the problem

even comes from. The ‘gaps’ in Figure B.1 between pushbacks 10 and 11, and pushbacks 39 and

40 are the main concern. These gaps form because large areas of the deposit suddenly become

economic all at once when a critical economic threshold is reached.

The algorithm in this appendix does suffer from some drawbacks which preclude its use as an

end all solution. Specifically the pushbacks selected by this process do not, in general, satisfy

minimum pushback width constraints and the procedure does not consider any geometric or

operational considerations. The algorithm also can not overcome situations where the gaps are so

large, or the pit-by-pit graph is so nonlinear, that evenly spaced pits do not exist in the input set.

However, the pushbacks selected by this approach are guaranteed to be as evenly spaced as

possible with respect to tonnage and are a far cry better than manually selected pushbacks.

187



An early analogue of this algorithm first appeared in Maptek Vulcan Version 10 with the

Automated Pit Designer [116]. Users of that tool would run conventional nested pit analysis using

a push-relabel based pit optimizer resulting in several dozen nested pits. The tool would then

select a handful of those pits that were approximately evenly spaced by tonnage to create high

level initial designs. The pushback selection subroutine found extensive use as a practical way for

planners to filter their nested pits and also to define the so called “selected case” schedule.

However this early analogue was unable to guarantee an optimal solution, being developed by the

author of this dissertation following an ad-hoc divide and conquer procedure that was relatively

unsophisticated.

B.1 Algorithm Description

Formally, we are given the Tonnage, Tp, for each nested pit p in the set of nested pits

P, |P| = N , and an integer n which is the requested number of pushbacks to select. We seek a

subset of pit numbers P̂ ⊂ P, |P̂| = n such that the cumulative squared tonnage differences

between neighboring pushbacks is minimized. There is some flexibility with how this objective is

defined – but the squared tonnage differences performs well in practice and is well suited to an

optimal solution by dynamic programming.

We define the following additional pieces of notation:

• i ∈ {0, 1, ..., N − 1}; the index of the last selected pushback.

• j ∈ {0, 1, ..., N − 1}; the index of the current pit number in consideration.

• r ∈ {0, 1, ..., n}; the number of remaining pushbacks to select.

• S(i, j, r); the objective value provided we make the optimal selection for the remaining r

pushbacks from our current pit number j given our last selected pushback was i.

S(i, j, r) is governed by the following recurrence relation and two base cases:

S(i, j, r) = min
(
(Tj − Ti)2 + S(j, j + 1, r − 1), S(i, j + 1, r)

)
(B.1)

S(i, j, r) = (TN−1 − Ti)2 when r = 0 (B.2)

S(i, j, r) = (Tj − Ti)2 + S(j, j + 1, r − 1) when r = (N − j − 1) (B.3)

188



Equation B.1 encodes the objective. That is, for a given configuration we can select this pit

number as the next pushback increasing our objective and decreasing the number of remaining

pushbacks r by one. Or we can choose to not select this pit number; the second term in the min

statement. Equation B.2 applies when we have no more pushbacks to select and adds the

difference between the ultimate pit and the penultimate pushback. Equation B.3 applies when we

must select all of the remaining pit numbers to serve as pushbacks.

A recursive implementation of equations B.1 to B.3 would be correct, but very inefficient. The

dynamic programming implementation and traceback step follows in Algorithm 6. This routine

runs for Tet(N − 2)− Tet(N − 2− n) steps where Tet(x) is the xth tetrahedral number:

Tet(x) = (x(x+ 1)(x+ 2)) / 6. This is on the order of O(n3) however the algorithm is practically

very fast as N is typically less than a few hundred and n is typically less than twenty.

A minor modification of the algorithm allows the routine to output all optimal sets of

pushbacks ranging from 3 to n+ 2. This modification is useful when the desired number of

pushbacks is not known or will be used as a sensitivity parameter for downstream analysis.

B.2 Conclusions

Nested pit analysis remains a useful tool for long-range open pit mine planners early in the

design process. Selecting a subset of those nested pits to serve as pushbacks for downstream

scheduling and design has generally been a tedious and error-prone manual process. This novel

algorithm removes this manual step from the planning process and solves a long standing

inconvenience faced by mine planners.
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Algorithm 6: Algorithm to select evenly spaced pushbacks

Input : The monotonically increasing pit number tonnages T of size N , and n the
number of pushbacks to select less 2

Output: The set of evenly spaced pushbacks P̂ of size n+ 2

K ← Tet(N − 2) - Tet(N − 2− n);
Initialize Sv, Tb, Sp as arrays of size K;
si← 0;

for r ← 1 to n do
q ← N − 1− r;
tsi← si− Tri(q + 1) if r 6= 1 else −1;
for j ← q to 1 do

tni← si− j if j 6= q else −1;
for i← j − 1 to 0 do

if r = 1 then
sv ← (Tj − Ti)2 + (TN−1 − Tj)2;

else
sv ← (Tj − Ti)2 + Sv[tsi];

if j = q then
nv ← −1;

else
nv ← Sv[tni];

if nv = −1 or sv ≤ nv then
// Select this pit number as a pushback

Sv[si]← sv, T b[si]← tsi, Sp[si]← 1;

else
Sv[si]← nv, T b[si]← tni, Sp[si]← 0;

si← si+ 1;
tni← tni+ 1;

if r 6= 1 then
tsi← tsi+ j + 1;

P̂ ← {0};
ti← K − 1;
pn← 1;
while ti 6= −1 do

if Sp[ti] = 1 then

P̂ ← P̂ ∪ {pn};
ti← Tb[ti];
pn← pn+ 1;

P̂ ← P̂ ∪ {N − 1};
return P̂;

Procedure Tet(n)
return (n ∗ (n+ 1) ∗ (n+ 2)) / 6;

Procedure Tri(n)
return (n ∗ (n+ 1)) / 2; 190



APPENDIX C

SPRINGER NATURE PERMISSION

Chapter 3 is heavily based on the paper “An Open-Source Program for Efficiently Computing

Ultimate Pit Limits: MineFlow” by Matthew Deutsch, Kadri Dağdelen, and Thys Johnson which

was published during the course of preparing this dissertation. Permission to reproduce this

material was obtained from the Springer Nature and Copyright Clearance Center and the

complete agreement is included as a supplementary file titled appendixc springer license.pdf.
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